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Preface

The work described in this report was performed under the cognizance of the
Guidance and Control Division of the Jet Propulsion Laboratory.

The purpose of the report is to document and disseminate information of prac-
tical value to the engineer charged with the responsibility for developing an
attitude-control .,_ystem for a flexible space vehicle. It is essentially a treatise on
the dynamics of fl,_xible vehicles as viewed by the control systems engineer, and
deals with control system design only to the extent of suggesting ways in which
vehicle flexibility can be accommodated in both preliminary design and final
evahmtion of the attitude-control system.

The major portion of the report is concerned with the derivation of equations
of motion for the computer simulation of a controlled and nonrigid vehicle, and
the development of coordinate transformations that facilitate simulation. Three
basic approaches to this simulation are covered: discrete-coordinate methods
(Section II), hybrid-coordinate methods (Section III), and vehicle normal-
coordinate methods (Section IV).

The discrete-coordinate methods of Section II involve few restrictions or ap-
proximations, arid in some cases are as general as Newton's laws for tile simulation ..................
of the dynamic response of a collection of interconnected rigid bodies. The limi-
tations of these methods stem primarily from the difficulty of creating the required
mathematical model of areai vt-hicle without exceeding the practical limits im-
posed on computation by considerations of budget, schedule, and computer
capacit.v.

The hybrid-coordinate methods of Section II1 receive the greatest emphasis
in this report, both because they appear to be most useful and because they
are the least familiar. These methods may be applied only when some portions
of the vehicle (flexible appendages) undergo deformations that may reasonably
be assumed to remain "small," thereby permitting the transformation to modal
coordinates for vehicle appendages. The key feature of this approach, as opposed
to the discrete-coordinate..method, is the possibilit), of tnmcating the matrix of
modal coordinates.

The vehicle normal-coordinate methods of Section IV involve transformations

_:" of all the kinematic coordinates of the simulatiou, and not merely the appendage
deformation coordinates. These methods are accordingly more limited, and even
when applicable, they may require more complex coordinate transformations than
the h.vl_rid-coordinate methods would involve. In the simplest cases, however, the
vehicle normal-coordinate methods probably afford the most efficient simulation,
since they then permit the most severe coordinate truncation.

In addition to the material in this report for use in the simulation of a controlled
flexible vehicle, there is material of value in preliminary control system design.
Because of the modail coordinates employed in both the hybrid-coordinate methods
and the vehicle normal-coordinate methods, the corresponding equations of motion

permit simulations of varying dimension and complexity, depending on the degree I
of truncation. As shown in Section V, one can truncate so severely as to represent
a very complex stl"uctural appelldage by a single modal coordinate, and then

mauually calculate dynamic transfer functions for use in preliminary control
s)'stt,ln design.
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, Abl_tract
The purpose of this report is twofold: (1) to survey the established analytic

procedures for the simulation of controlled flexible space-vehicles, and (2) to
develop in detail methods that employ a combination of discrete and distributed
("modal") coordh;ates, i.e., the hybrid-coordinate methods.

Analytic procedures are described in three categories: (1) discrete-coordinate
methods, (2) hybrid-coordinate methods,, and (3) vehicle normal-coordinate
methods. Each of these approaches is described and analyzed for its advantages
and disadvantages, and each is found to have an area of apF]ic;_bility.

The hybrid-coordinate method combines the efficiency of the vehicle normal-
coordinate method with the versatility of the discrete-coordinate method, and
appears to have the widest range of practical application.

The results in this report have practical utility in two areas- (1) complex.digital
computer simulat'on of flexible space vehicles of arbitrary configuration subject
to realistic control laws, and (2) preliminary control system design based on
transfer functions for linearized models of dynamics and control laws.
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Dynamicsand Control of Flexible Space Vehicles

I. Introduction for missiles and aircraft have long ago found it necessary
to consider vehicle flexibility in control system develop-

A. l_otiv_tion ment. To some degree, the concepts developed in this
earlier context can be applied intact to space applications

The development of an attitude-control system necos- (Refs. 2-10), but in many respects space vehicles are
sarily involves a dynamic simulation of the vehicle being
controlled, but-the accuracy required of that simulation unique, and new concepts must be developed to dealwith them.
may vary greatly from one application to another. As
long as tlw attitnde-control accuracy requirements are

low, and the vehicle is relatively rigid, the "dynamics The environmental history of every artific_,al satellite
block" in a control system block diagram is easily gen- or spacecraft is marked by a brief interval of vigorous
crated. Modenl space vehicles arc far from rigid, how- acceleration and vibration during boost, followed by pro-
over, and attitude-control accuracy requirements are longed functioning in a quiescent mode of operation
i.'acreasingly stringent, particularly for optical observa- characterized by extremely small loads and accelerations.
tions from space vehicles. Further improvements in con- Some missions may require a second period of violent
trol system pt.i'formance depend in many instances on acceleration for all ov part of the system, but still there
improved simulatio,: of the vehicle dynamics. The im-
portance of this subject is reflected in the existence of are two distinct m,d radically different dynamic environ-mcnts to he coi,,sidered. The universal solution to the

the NASA Space Vehicle Design Criteria Monograph, dilemma this poses for the structural designer has been
E[[ects of Str,actural Flexibility on Spacecraft Control the adoption of lightweight (and extremely flexible) de-
Systems (Ref. 1). This document includes relevant case

ployable appendages. The resulting vehicle is relatively
histories and references, as well as design recommenda- compact and rigid during the launch phase of its histo_,
titres, but after boost termination it emerges like a butterfly

The incorporation of vehicle flexibility into control sys- from its cocoon, extending antennas and booms and un-
tern design is a requirement neither new nor unique to furling solar-cell arrays until the structure has undergone t;
space vehicle applications. Designers of control systeras r,_mplete metamorphosis.
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Although modern space _ehieles can be found in a wide Analytic methods treated here are restricted in their
variety of conflguratir'ns, certain dynamic features are applicability to vehicles admitting of idealization as corn-
sufficiently common to be described ,as characteristic of binations of rigid bodies, particles, continuous elastic
space vehicles, as opposed to missiles, aircraft, ox , .,d bodies, and (in special cases) fluids. The equations of
and sea vehicles. Most current space vehicles car_ be de- motion of a continuous me(.hanical system (with con-
scribed as the comhination of one or more easentially tinuous spatial variation of mass and flexibility) are par-
rigid bodies with one or more extremely flexihle bodies, tial differential equations. It is assum(,d in this report
This natural separation of the structural subsystems of that any such equations descriptive of linearly elastic
the vehicles into two distinct regimes ".'sa consequence solid subsystems have been subjected to a "modal co-
of the widespread use of deployable al,pendages, which ordinate" transformation (as defined later in this section)
are much h, ss commonly found on surface or airborne and the resulting coordinates have been truncated to
vehicles, permit represent_:tion of system deformation with a finite

number of modal coordinates. Thus continuous linearly

The structural subsystems of a spacecraft or satellite elastic solids are admissibh' only in the sense that they
are often required to undergo substantial relative motions can be r_presented either as a collection of interconnected
during mission performance, wl,.ile large antennas, ._olar- rigid bodies or by a finite number of modal deformation
cell arrays, instrument packages, or plcpulsion devices coordinates. Fluids are admissible under three conditions
change their relative orientation. With the exceptions of only: (1) the fluid in a given container can be idealize.'l _,
variable-sweepandrotary-wing aircraft, most surface and as rigid, (2) the fluid can be represented by a finite

Iair vehicles have dynamically significant moving parts number of modal coordinates, or (3) all aspects of the
only as semirigid rotors in the form of wheels, propellers, fluid dynamics can be ignored, except possibly the in-
and propulsion subsystems. A rigid, s.wnmetric, fixed-axis fluence of the fluid on energ.v dissipation. In consequence
rotor is easily incorporated into a dynamic simulation of of the formal exclusion of continuous mechanical elements,
a vehicle, but the presence of a fully articulated flexible the equ._do_ (.)f motion are ordinary (and not partial)

antenna on a space vehicle necessitates major changes differential equa_.',_.ns.
in the formulation of 5ts equations of motion, particularly
when the relative metier, of vehicle and antenna is sl_b- Three distinct approaches l_ the analysis of flexible
ject to closed-loop, nonlinear control, vehicles are treated in this report: (1) the discrete-

coordinate formulation, (2) the hvbrid-coordip.ate formu-

A different class of problem is introduced by tl,e use lation, and (3) the vehicle normal-coordinate fi_rmulation.
of discrete damping devices in spacecraft subsystem These methods are consider('d in turn in Section'; 1!. III,
vibration isolation or passive spin-stabilization nutation and IV, with emphasis on the second m(.thod. A brief,
attenuation, qualitative description of each of the three _zene:a!

approac_.hes is given in the followintr, paragrapl_.

All of tt.,ese characteristic features of space vehicles
present problems in dynamic :dmulation, and some of The v(,l@le normal-coordinate method is th,, traditional
these problems arc quite difficult to resolve by applica- approach to the vibration analysis of elastic svst(,ms. This
tion of the methodology of aircraft and missile control method is well documented in t(.xts (R(.fs. ll.-13_.-and
system design. There must be a comprehensive examina- space applications can t)e found in technical r(,pt)rts and
tion of the question of dynamic simulation for attitude journal papers ¢Refs. 2-10). so in this report it is described
control of space vehicles, and new approaches must be only insofar as this seems nt.cessarv fol comp_et(..n(,ss of
developed for applications that are 1)evond the scope of the stud.v and for comparison with less familiar nw-tht)ds ..................
the efficient utilization of traditional methods of analysis.

In brief, this nwthod consists of f(,rm)datin_t _,qu,ti,,ns
of motion, whenever possihle, as a svstt.m of ind%,endent

B. Scope (uncouplt.d! scalar s(.cond-ordcr di_<:.r_.ntial (.quati,)ns.
The present study is concerned with the development For limited motion:_ of c. restricttd class of physical sys-

of methods for the dynamic simulation of flexible spece- tcm_. systematic procc,dllres can t,. tteneratcd fi)r the
craft. The emphasis in this report is on analytic simula- d,,tcrmination of the transf(Jrmati,)r, nt c_.ssar'v t,, chan_,-
tions, although it is recognized that analytic rt,s)dts mtLst from some arbitr,_ril.v s_.lectt, d co, rdinate system t() tl,e
gent.rally lw continued or corrected by experimental inca- coordinate svst,,m corrcspondin_ to uncoupled scalar
surem('nts on models t)r prototype vchich,s, cq)tations of i,),,tion. In _.)_f ral. tht. new unco)lpl,.d co-
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ordil,tte._ (called m,'mal coordin,,t:_') do not correspond this approach is sometimes called the discrete-parameter
imlividuallv to the translations and rotations of discrete or discrete-coordinate method.
l_()illts ()r rigid bodies of the vehicle; instead, each coordi-

I|ate is associated with a motion in which the entire vehicle The discrete-parameter approach to space vehicle sim-
participates. Coordinates that correspond to motion of ulation has received great emphasis since 1965, primarily
mort, than one particle or rigid body of the system arc because of its generality. A growing body of literature
call(,d distrilmtcd or mochd coordim_tes, as opposed to on this subject is becoming available (Refs. 14--22), and
discrete coordinates. When all tllc dynamic equations era digital computer programs based on these and other

system are uncoupled (as in th(' vehicle normal-coordinate formulations arc becoming commonplace tools of analysis.
method), the modal coordinates are called m.'mal-mode

coordimlt_'s f()r that svsWm. Because the equations of The approach most frequently adopted (Rcfs. ld-21)
motion ar_' uncoupled, the vehicle can madergo motion involves direct application of the Newton-Euler equa-

p in which onh" one of the scalar coordinates of the system tions of translation and rotation to various subsets of
parti('ipates. In this mode of motion, all points of the bodies in the assembly (often to each of the bodies indi-
vehicle oscillate at the same frequency (the normal-mode vidually). Alternatively, Lagrange's equations arc some-
frequency) a_d the vehicle undergoes periodic deft)rm:l- times applied (Ref. 22).
tious into the same deformc(l shape (the normal-mod'e
shape). Each modal coordinate defines the amount of the When apFlication is restricterl_ to a vehicle model com-
resl)c)usc ill the corlespon(ling mode, suitably normalized, posed of n rigid bodies intercom (,c_?d at n- 1 point
The ind('l)cl_(lence of the._e normal-mode coordip.ates per- contacts so _ls to form a "tree" structure topologically,
mils the indt'pendent eaieulatioli of their participation the Newton-Euler equations allow dramatic simplifica-
i_ tht. vt'lficle motion. This is the key feature of the normal- tion. These restrictive assumptions are illustrated in
e(_ordinate al)l)roae!l, 1)ecause it permits the exercise of Fig. 1, which shows that adjacent rigid bodies share at
('ngi)l(,ering ju(lgm(,ld in determining which eoordil_ates least one common point, and no closed loops are formed
are .so sigilificant as to warrant r(wntion, and whicla may by an), string of rigid bodies. The 12 bodies and 11 points
bt' aban(h)m,d in t'_)or(limde tnmcation.
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of c,mtact in the flgl,rc, are arbitrarily labded. Tile simu- tion of the system. Analysts disagree, however, on the
lati_T_s described in Refs. 14--19 and 21are limited in -advisability of this operation fin" computational etficiency
tiffs mamwr (tht. "|,'_'e" of Ref. 21 is more like a "bush," (Ih'fs. 1.1, 18, and 2(I)......
witll a trmlk and limbs each consisting of a single rigid

lmdx). ('rider these conditions, for a comph, te kinematic V_Zht'nLagrange's equatimls are written in terms of at
description of the system, it is suflqcient to know the set of independent generalized coordinates (Ref. 24, art( ......

location of (),it, of its points (e.g., the mass center) and tie 26), constraint equations are absm'bed automatically,
the orwntation or attitude of each of the bodies. It is and the vquations of motion arc ol)tahwd immediately
tht'r_'fiwe l)ossil_h, to reduce the mmflwr of equations as a set of s-cond-ordcr difl'erelJtial t'quations of mini-
required for th,. dynamic simulation, eliminating all mum number. The restriction to the use of i,,dependt'nt
translational c()ordinates (except those of the system mass genera]izt'd coordinates may, however, hi. a handicap,
center, which may lw determined indt'pendently in many sincethis precludes the adoption of Euler paramcters or
cases), direction cosines for attitude description,. As a result,

such a conventional I.agrangian formulation must employ
Euler's equations of rotational motion of a rigid 1)odv a coordinate system not entirely free of singular(tie:. In

(say, the ith body) are three scalar first-order differential practice, most (perhaps all) programs based on Lagrange's
equations iv the variables o,i,°,_,,,,_, which are measure equations use attitude angh's as coordinates (rather than
numl)ers of the inertial angular velocity of that body Eulcr-Rodrigues parameters), and this selection intro-
for a body-fixed vector basis. These variables, collected duces computationally cuml)ersome trigonometric ft,uc-
for all n bodies, generally constitute the unknowns of tions into the calculations. This may be a greater handicap
the final differential equations, which art, therefore first- than the presence of singularities, particularly if digital
order equations. Because a set of angular velocity inca- simulation is anticipated. This approach is also restricted
sure numbt'rs does not in itself provide a complete to systems with holonomic constraints, although this is
kinematic description of the system, an additional set of perhaps n_,t ,as severe a restriction in aerospace applica,_
first-order equations must tw included to per:nit the de- tions as it would be fin" land vehicle applications that
termination of attitude by-angular velocity integration, include rolling wheels.
These kinematic equations may be expressed in terms of

any desired set of attitude parameters, e.g., direction One may increase t]w scope and flvxibilitv of the
cosines or a subset of dir,.'etion cosines, Euh:r parameters, Lagrangian approach in at h,ast two sigl_ifieant ways.
Euh'r-Rodrigucs paramt.ters (Ref. 23), Euler angh, s (3, 1. With the introduction of l,agrange multiplicrs (Ref. 24, _
3 rotations), or Tait-Brvan angh,s (1, 2, 3 rotations). The article 87). the restriction to a set of independent gvn-
last three alternatives involve only three parameters (the' cralizvd coordinates is relaxed, and one may adopt any
minimum numlwr) fin" the attitude description of each kir, cmaticallv comph'te set ,ff coordi_,d,'.s, prm;ding only
body. but all tlaree-paramcter sets are plagucd lw (so- that constraint equations in the form of equal(airs Inot
fated singularities that nmke nmnerical COmlmtatitms inequalities) exist in sufficient numlwr to offset (lie c_mrdi-
inqmssiblc fin"ccrtain attitudes (withouteoordinate trans- nat(, re:lundancv. (l.'nfortunatcly, aerospace x_'ldch, sub-
formation)..klost spacecraft-simulation programs employ _x'steln c,mstraints s,mh as damper and gindml "stops"
a larger set of attitude parameters, accepting the (neon- are in thv excluded class of inequalities.) Tl_i., ;tl_proac]l
vt'nit net' of working with a set of coordinates interre- extends thv scope to certain _mnl,olonomic syst,.,ns, and
lated by one or more constraint relationships. There it permits the use of redundant attitude parameters (v.g.,
appt'tu's to be no overwhelming preference between a Euler parameters). The pricc paid is the added dimen-
subset of the dircction cosines (u:;ually six in number) sioia _if the problem. This method does not se,-m prom(s-
and the four Euler p_,:'a,m,t_,rs (or Cavh'v-Klein param- ing i,i comparison with the Newton-Elder metl,_tl, and
ctvrs or oh'meads-of a cluat(,mfiolJ), appcars not to hart. l)et'n pursued for gcnt'ral space

vehicle simulation, lh_wevcr, applieati(ms to restricted

If ore' of the h_dit, s of th(' set has mort, than mw poi,lt prol_h,ms can 1)v found in the aer-space jmlrnal litc.rat,,r_.
il) ctmmmn xvitll a,mtht.r l_,clx (e.g., the txw, are con- (Ref. 25).
nt'ctt'd by a line ]tinge,, tlfis zuav be represented i,i the
simulation by an additional (..OllSt,,tint equation. Procv- "Flit' second relevant modification of the l,at_,rangian
durcs exist fin" the s.v:.;tvmatic incorporation of such "joint fm',mllaticm is mow fimdamt,ntal. It is possil_lc to avoid
,'onstraints" into th,.' dynmnic cquations, with conseqllent the rdiance in l_gra_ge's equations upon g_,,_t,ralizt,d
reducti,m in dimcrsion of the matrix differential equa- ¢'_,_rtlit,,,_tt.s._vl,ic]_ nmst bt's_fl'icicnt to establish fidly in
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til(.J,,..vl_'('ntile. coldi_,),atioll ()i the _vntem at any _ivez, l)e adolm,d, i'hlt ,,vllen all or p.rt _.)ftIw vehicl(, allo,,vs
tilxle. ()n(' nlav _dt('rl,_ttivch" write 1.a_rmlKc"s eclllatiolJs tl.' aSSU),q)tiollof small, lil.'ar]y elastic dciorz_mtioll, tll_,
ill lerllls (d"qll..si-_'_:_n'dimlh'.s'(Hcf, "_1. article 3()), whk']} nl.)nt eHicien_tsinllu]ath)n is tirol xvhk,]l c.omlfines d/.s(.'rvte
are _llmnlt/tivsw]_()sc,(litt(,r(,1_tials may b_' writtel_ as ]/re'm" c()()rditlates Wit]l distrfl)ut('d (s_()da]) coordinates, rutain-
v(.Idfi_al/()ns (d diitert,_thds ()t !_('_vn'a}iz('([coo]'dhmh's i_ tl_e genera]itY of discr( I_, e()ordinates wh('re t.'ces-
a_)(] ti)))('.."ii)x'(' !]_(' a_',m_]ar veloe'ilv m(,asur(. )mml)(,rs sat.v. })_)t s('curh_g t})(' c(-))_q)utali())m].....advat_ta_('s o|

,.,',,.. ....' ()I a _iv('_) ith Ix)dr q_mlif.v an d(,rivative._ ()f (trm_cat_'d) _n()dal (:()()rd/nat('._ wl)_'r<'p()._nil)h'. TI,, r('nult
(l_,,_si-c()()rdii_m,s, tl)is l.a_rm_im)appr()aeh ('an pr(_d_l(,(, i._ a h?lhrid-c_)ordi).){:{c svst('m tl)at p(,rmits ac(.Irat('
)'(,s_lts _vitll s())))¢,()f tl., (t_)alili('s ()f tl)(, N(,wt()))-I':))h,r si_)_,l:;ti()n ()f c()mph,x modern space _('l)k'h's will) a
f())_)_dation. ))fi)fin)u))) ))_u)d)(,r ()f c'¢)()rdi)mtes, and _vitl_ irrelevant

ld_lMr('quen(:> ()n(_'illatio_)_rem()v('d from t}.' i)m'grati()))

.\ r('(.'('nt ._d,q_l'ati()))])v Kmw and \Vml_ (l]¢'f.'_.2B. °7) ()_)tput l)v ))_()dal-c()())'di)vm, t)'_mcati()_,. Althc)ugh tiffs
m(,th()d is a _)atm:al (.,()ml)inati()n ()f t])_' ()t]wr two ap-

()f l])(, ¢{_msi-cc)()rdhmt(, f()rlnu]ali())) s('('ms w(.]] .'_uit('d to
c()nq)h'x Sl)a('¢'(__dt si,)mlati()n. ']'1_(,method is ¢_l)plic'able l)r()au,l)('n, it ]ms r¢.c(,iv¢,d very little ('i_phasis in t})¢' ted)-
t() certain n()nli()h)n())ni(, svst('ms and to svstexns ,,','it]] nk'al ]iterat_u'(' t() datv (l]('ls. 2_. 29). l;()r lids r('a.,_()),._)_(l

])vcause tiffs mct})od seem:s t_)c()m})ir:t' t}_('c()))q)utaci()na]r_'d_,ndant (and (.()),strained) c(x)rdh]att's; vet it auto-

matical]y (,]iz_finates nonworking constraint forc('s and advantages ()f modal ana]vsis with the net'ded gex,('r-
t()r¢lueS...\Itl,)u_], the al)pr()a(.h by Kane and Wang, alitv of the discrete-coordinate approae]), tl)(, }M)rid-
appears to coral)in(' certain advantages of the N(,v,'t()n- (:()()rdinate method receiv('_ major emphasis in this r('p()rt.
Eu]('r m¢.thod and the Lagran_ian method, this path to
comph'x system simulation has not vt't been taken to the Th(. qu(,stion ()f c()ntro] svstt'm simulation per s(' is
point ()f a nmltil)urpose computer pr()gram for macl]ine included in this report ()_dv ins()far as tl)is issue is coupl('d

to the primary que._ti()n ()f th,xibh, velfich' simulati()n.c(m]putati,m of th(' reSl_OnS(' ()f arbitrary discrete param-
('!('r ._VM('l Vl._.

II. Discrete-Coordinate Methods

S('('tion I I ('()ntain_ ¢_))intr()duction to the formulation A. Augmented-Body Methods
of tlw ('(luati()_,s of n)()ti,)n for discr('t(.'-parameter systems.
The text (h's(.ril_('s v,itl,)ul derivation the results ()f F,efs. llook(,r and .Margulies (B(,f. 14) an(l l_()l)ers())) and
14 and..15, and n()t_,s s()_))¢.()f th(, features of Hers. 16-°0. \Vitt('_)l)erg (B.efs. 15. 16) ]rove ()})s(,rv('d that when a

Tlw ,_(,tl)od of Kan,.' and \".'a_ is also 1)ri('flv des(,rih('d, svst(,)n ()f)) l)()int-e())m('cted rigid })odi('s is asscml)h'd in
In view ()f the l_mcti())m] and-structured b('autv ()f t],, a t()p()logical ire(' (as i)} l:i_. I), c¢,n'tai)) inertia-like terms

e(luation._ d('vel()p¢'d in these r,'ferem'es, it s¢'(')))s unlik('h naturally al)lWar in c()u))[)iuudi()x)in lhe i),(lMdual (,qua-
that improvem('nt can l)e r(,a]iz(,d by additiona} in(h'I)('n- tions of )))()ti()n ()f ('ad_ _)I tl.' x'igid bodies in t]_e set.
dent (l('rivati¢)))s. and th(' anal'<._t(.()nfront/ng the probl(,m ']'h('se ceml)i_)ati()ns a(l)_dt ()f i)]iysica] int('rpretati()n as
,)f ._imu]atin_ comp]('x di._er(,te-parameter sv._ten)s i.,, It,, inertia dvadi(.'._ (()r t('n_,)r_ ()r matric,(,s) ()f al)._tractions
a(hise(I t() a(:q_mint himself first v<it}) the ref,,r(,m'('d called the au_mr'ut¢',l h,,'l;('._, l')rM]y, t},./th au_m(,nt('d
lit¢'ratur('. })()dr consist,_ ()f tl)(' /tl) l.)dv ,)I the' set t()g,('tl.'r wit])

e¢'rtain particle.,, (p¢)h)l))m,,s('s) attacl)ed t() ('at}) of t})('

l)is(..r(.,t,.,-l)aram(,t(,r shn_dation.,_ ar¢, not without n¢!rious j()h_ts of that 1)odv. T},' l)()i_,t ))ira,,, attacl,.'d t() a _iv(,))
disadvanta_t,.,_. Sati.dact()rv simulation of real veldcles joint of tlw ill) l)odv (,¢l_)als tl,¢, h)tal ,,m_,s ()I all ()f t],'• c()m]('ct(.'d !)()dies h:,eat('d "(_utl)()ard'" of th(' joi))t, l"or .....

_nav n.q_fir(, -_gr_,_ many rigid b()die.s ix) tlw model. The (.xamph,. the au_m('_m'd l)()dv ,9 ()f tl,., l'_-l)o(ly svst('m
rcsultin_ difl('rcntia] (,({uati()ns at(' th('n ()f high dimen- shown i_ Fi_. 1 is i]hnstrat('d in Fig,. 2. TI)(, )0m.ssc(,n,tc,r
sion. and tht, ir digital si)luti¢',n may 1)(, plagued l)v high- ()f till' a_um(,nt(,d l)(_(h is ¢,alh,d the ('o)ln_'r'tio_ bar?l-
frequ('_,cy rt,sponscs that are of n¢) interest to the el)gixlt'el'.

ct'nter (()r ,,imply tl., l)arvc¢'_m'r). The in('rtia dyadic ¢)t
Tl.,re is _() u_'chanfism for truncating the matrix ()f

t]_t' a_g_n¢,n)t(,d b()dv '.vitl) r(,sp(,(,l to tl_(. ¢,()rr¢'sl)()ndi_gu_)()rdinat('_ retiLin('d in the determination ()f vehicle re'-
1)ar'_c(,nt('r is tl)(' t(.r))) that al)l)_'ar_,in) tl,' ('q,niflfl)),_.

_l_()))s_'. s()a,_ t() _,li):finat(, these high-frequ_'ne> rcsp_,n'_('s

m)d r(,(hw(, the, (limen_,ion of tht' I)roblem. A vari('tv ()f apl_r()ach(:, )))i_l)t I)(, cc))_,,,idt,r(.di,_ f()rmu-
lativ, g the Nt,v<t())_-l'.hdt,re(luati()))s ()f nn()ti()n of a _vstt.._))

V_]lt'l_ t})(' svst('m c()nfi_Ul'iiti()n demands tht, _(,m,rality ,)t rigid 1)()di(,s such a_ illustrated in) Fig, ]. P('r]ml)S t].'
()f a dis(.,ret('-l)aram(.'t(.'r simu]ati()n. Ibis alternativc must )no:.,t dir(,ct al)pr()ac]_ is to i'_o]at(' ¢'a('}) oi" tl.' })¢)c|i('s i),
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configuration and attitude; it is not necessary to know
,_ '" I1 '"h2 _ [% ' %' % mass-ct, nter positio,_ coordinates as well, since these nmst

'.--Y'g_,.... o %..... o "4" % follow from tilt' kinenlatic constraints imposed by the
-_,1_'910' ' 912 B9 ,_-"_"_ "v_'/ I

." '_"_--- -----------a_---_-_ .... - _ joints. Consequently it lp.ust be po::sible to combine the
•' _ ,¢t_9-'_'_--_-_ // vector equations (1) for all _ bodies in such a way as to

'cM)'_¢/_/7 _ obtain n vector equations of rotational motion that arc
_8 internally complete, without any coupling terms to addi-

i tional translational equations. This is accomplished by
%'_J"_"""_ first solving the translational equations (1) for the hinge

forces in terms of mass-center accderations, and then

Fig. 2. Augmented body 9 and its barycenter B., obtaining from kinematics the mass-center accelerations
in terms of geometry and rotational coordinates.

I turn ancl write the translational and rotational vector
equations for that body, recognizing that neighboring The specific manipulations that accomplish this reduc-
bodies contribute to the applied force and torque. This tion of equations (1) to a dynamically complete set of
procedure leads to the appearance of augmented-body half as many equations can be found in Refs. 14--18. In the
inertia dyadics, so it is the method used here. It should work of Hooker and Margulies (Ref. 14), the manipulation
be recognized, however, that this is not the only possible is performed at the level of explicit vector equations for
approach; one might, for example, exclude the equations the individual bodies, while in the work of Roberson
of motion of the nth body and instead write the transla ..... and Wittenberg (Refs. 15, 16), this task is deferred to a
tional and rotational equations of motion of the total sys- stage of the derivation in which the rotational equations
tem, or of any connected group of bodies within the of motion are matrix equations of dimension 3n. In both
system. Other possibilities are explored in Section II-B. developments, there emerge terms (dyadics in Ref. 14

and matrices in Refs. 15, 16) that have the indicated inter-

For an individual body, say, the ith body, the transla- pretation as inertia dvadics or matrices of augmented
tional and rotational vector equations of motion may be bodies. The vector-dyadic result, for example, is given

written as for th_Mh hody in tl_e notation of Ref. 14 by
.\

F _ = m_a _ ._ _,('d_a \ _a ;'I.__-_,, =(1)
T' = I:t' =l"da' +_Xl'.;o _ ( T., .: _,_TT,-+ DawF.,+ _ D, I,,':F,,

It

,( .1_ I t ."_.

where F _ is the resultant force and T i tim resultant torque _ 111_ It).,_, / [&_, × Dj,._ • _1' >I.(_, " DI,*I] (2)

applied to the ith body, m_ is the body mass, a _ the mass j,.-a \

center inertial acceleration, H _ the body angular momen- with the following symbol definitions:
turn, I _ the inertia dyadic, and ta_ the inertial angular b

velocity. The quantities T _, H', and I; are all referred _( =\the inertia dyadic of the a.th augmented
to the body mass center. In the notation used in this ' body, referrect to the corresponding barv-

report, dot (.) over a vector indicates time differentia- center
tion in an-inertial reference frame.

tax and ta_, = the inertial angular velocities of bodies ,\
and if, respectively

Among the constituents olr the applied _orcc F _ there

are "hinge forces," i.e., forces applied to the ith body T_--= that portion of the resultant torque ap-
by contiguous bodies at the points of contact. These plied to body ,k ob.tained by excluding
hinge forces generali.v contribute also to the torque T _ forces and torques applied at joints
about the ith body mass center, and typically this is the

only coupling mechanism between the translaUonal and T"j = the "hinge torque" applied at joint j of
rotational equations (1). body ,\

It is evident by inspection of Fig. 1 that knowledge of 1, = the set of numeric lal)els for the joints on
the attitude of every body of a point-connected set is body,\ (e.g., from Figs. 1 and 2,1.. includes
sufflcient for the complete determination of the system 7, 8, and 9)

6 JPL TECHNICAL REPORT 32-1329



D._ :: the position vector from the barycenter _re v constraint equations and n rigid bodies in the sys-
B._ to tilt' mass center of body _. (e.g., see tern, then there are available 3n + v scalar equations to
Fig. 2) be soh'ed for the 3n unknown angular velocity measure

numbers plus the t, constraint torques. (An additional

F, and F I, = the forces applied to bodies ,\ and _t, re- equation is of course re_!uired for the determination of
spectively, excluding forces applied at the translation of the syst m nmss center, but tiffs equa-
joints tion is generally mwouplet_ with the attitude equations

and is ignored here.)

D,_t, :::: the position vector from the barycen :er B._
to the joint of body ,_.that leads to body/' The most direct approach to the determination of
(even if body t' is not directly connected dynamic response is to combine all the equations of dy-
to l)odv ,\, l)ut instead ks part of a chain of namics and kinematics with the. constraint equations as
bodies connected to body ,k) a single-matrix first-order differential equation of dimen-

sion 6_i-: v and proc.t:__'c!3v!t_h l]Ull)y[!.cal integration.
'111--_the total system mass

The possibility of eliminating the v constraint torques,
= the sum over values of i in the set 1,_. tlms reducing the dimension of the problem to 6n, is

_'"' discussed briefly in Ref. 14, and related questions are

The left side of Eq. (2) has exactly the form of the explored extensively in Refs. 16, 18, 19, 20, 26, and 27.
vec'tor-dyadie representation of Euler's equations, except Some of the methods thatserve this purpose are discussed
for the substitution of the augmentt.d-body inertia-dyadic in Sections II-B and II-C.
about the barycenter (¢J0 for the body inertia-dyadic
about the mass center (1"_).The right-.side of Eq. (2) in.. The task of assembling the n vector-dyadic rotational
clmh's the body torque "1'_and the relevant hinge torgues equations into a singh' matrix equation is made quite
T_(,, as would be the case for Euler's equations, but the awkward by the summations over limited sets of joints
torque contribution of hinge forces takes a surprising and bodies that appcar in Eq. (2). Roberson and
form. In evt'ry case, torques are calculated with respt,ct Wittenberg (Refs. 15, 16), in a derivation that developed
to the l)arycenter, and the appropriate force tm'ns out to in parallel to that of llooker and Margulies (Ref. 14),
be the sum of the body forces F I, and certaiu "'inertial utilize graph theory to constr||ct an elegant formalism
forces" that may be attributed to angular accelerations for the systematic assemblage of the individual vector-
and centripetal accelerations, dyadic equations into the singh, 3n-dimensional matrix

equation of |notion of the total svste|||. The equations of

In view of the comph, xit.v of the n-body system under Ref. 15 are programnwd (with some modification) in
examination, it is astonishing that the equations of motion Ref. 17, and those of Ref. 14 provido the basis fl)r the
should l)t, so simple in structure and amenable to physical program developed in lh't. 18.
intcrprctatio||. Simplification is even more dramatic when
there is a coincidenc_:-of l)arvce||ter B,t and a joint, since Whether the matrix equation is th'vel¢_ped with the
then the vector D,_t, is zero for all bodies connected to beautifid formalism devised by Rolwrson and Wittenberg
body ,\ by tlmt joint, and sul)statatial d_,coupling of the or assembled in more pedestrian fashion (its computa-
cquations results, tional efficiency may suggt:st), the final strm.ture o? the

equation must be as f,,llows:..
In general, of c'our.se, there are required n vcctor-dyadic

equations such as Eq. (2) to complete the dynamic de- 5,1,;, ::= ;1_- -t' (3)
scription, and in addition some specification of the hinge
torqt|es T_(_ is required. In most :,pplications, some 'ff 'a'hert' .f' absorl_s all terms involving constraint torques.
tht' bodies in the |||odt.l art. c_u,llcctt'd l)y lint. hinges, ,; e|||b|'ac,'s all external forces and torqu¢_s as well
so that a lint, is co||u|lo|| to two bodies of the system, as all t,.rnls involving inertial angular velocity terms
The hinge torques T" transverse to the hinge axis then ,,,,',(,, _ 1, 2, 2, i --- 1, • • - n), and .",t is the coefficient.k j _ "

becomc constrifi||t torques, and t,ach lit,' hinge provides matrix ,,f all dit[erct|tiatcd terms, which art' assembled
two sc,dar constraint eqt|atio||s that pr¢,cl||dv relative to- in the cohmu, matrix ,:,. Ignoring for the moment the
tations t,xct'pt about the hinge axis. Similarly. a two. qtw._tion of ]row c_mstraint equations are to be used to
gimbal joint provides one constraint equation. If there accommodate mJknowns in ._' one can rcadily sce that
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it is tilt, nature of //) that ;viii determine computational tional body in any one step, and without ever considering
dilfiuulty. If /,i were a nonsingular diagonal matrix, a .,_a subset with more than one joint connecting.it with the
trivial inversion would permit Eq. (3) to be written as excluded bodies of the system. For this example, one

might follow the indicated pattern until each of the three
,7,= P)-_ ;/3 + ._.) _ ,_' (4) chains attached to body 4 has been considered, without

ever including body 4 itself. (This choice of body 4 is
where superscript -1 denotes matrix inverse, arl)itrary, since other subset selections within the pre

scribed pattern can converge as well on any other body
Unf(_rtunately, a glance at Eq. (2) indicates that iner- of the system.) Finally, t}le equatious of motion of the

tial coupling ternas involving _t, must exist unless D_ t, : 0 composite vehiuh' are recorded, to complete the dynamic
for all ,'. The same term D._t, Y, 6t, al,;o assures the time- sinmlation.
varying character of .<'i, since the cross product depends

op, the c]mnging relative attitude of b(idic's A and ,¢. This The idea of isolating in sequel]ce such subsets ¢)f rigid
constitutes a major (ll)stacl(, to numerical integration, bodies in an t)-body system (called I)ested bodies by
since if l':q. (4) is used it becomes necessary to invert Velman) seems to have l)oth advantages and disadvan-
the 3n by 3n matrix .hi at each step of the lilt gration, tages. The concepts c)f the aulcmented bod!l and the
In practice, it may prove mcJre convenient to _etain the cotuwcticm bar!lccut_'r are helpful aids to physical inter-
equation in the form of Eq. (3), applying Gaussian elimi- pr¢'tation (if n()t to numerical computation), and the
nation rather than matrix inversion at each integration terms with whicl, tllese phrases are identified in the
step. Even with this expedient, the algebraic process of equations of Rc_bt,rson-Wittenbcrg (Refs. 15, 16) and
finding ,:, is apt to consume most of the COml_uter time llooker-.'Xlargulies (Ref. 14) do not appear when the
in numcrica] integration. Since time rcquired for this nested-body approach is taken. In compel_sation, how-
process increases roughly with the third power of the ever, it wouhl appear that the nested-body derivation
dimension of the matrix ,6i, abundant motivation exists facilitates the elimination of internal constraint forces

for working with equations of minimum dimension, and torques.

B.Nested-Body Methods Vehnan (Ref. 20) derives his equations in a manner
that leads quite naturally to the use of attitude variables

In writing u vector equations of rotational motion for -that establish the orientation of each body of the system
a set of I_ point-connected rigid bodies, one must make relative t_J an adjacent body (except of course for one
a choice of the t_ material subsystems to be isolated for reference b_ldy with inertial attitude p:xranaeters). Because
dynamic analysis; it is not obviously advantageous to ge_metrical constraints gencrally restrict relative motions,
isolate each of tile rigid bodies individually, as is gun- it is perlmps easier to identify which attitude variables
erally the practice in Refs. 14-18. (In Refs. 15-18 there arc constrained when relative motion coordinates arc

is an explicit departure from this practice when a pair tunplo>'ed. Nonetheless, there is no attempt to eliminate
of rigid bcJdi¢,s consists of a a'igid body containillg a rigid, kinematicallv constrained variables in the derivation c_f

axis>mnletr.ic-v<ltor on a fixed axis.) Vehnan's dynamical equations, so his equatit_ns have _tt
the outset the same bltsic structure and dimension as those

Vehnan (,Rcf. 20) and Russell (Ref. 19) elect instead of Roberson and Wittenberg or.. Ilooker and .Margulies,
to write vector equations of motion in turn for n different namely,
subsets of bodies, inclttdiJlg a final set of rotational and
translational equations for the composite vehicle. F'or .q-/,;,-= c,] + L' (5)

example, if tl_e vehicle were m_ldelcd by 12 point-
connected rigid b(_dies as sh(iwn in Fig. 1, both Vehnan These symbols differ in interpretation amo_.g the several
and Russell might write equations of motion first for autlH,'s, and, in particular, Vehnan's ,., includes s_mle rela-
l,odv 1:2. tht:n for the subset including bodies 11 and 12, tire veh_cities. It shmdd be noted also that Velmal/s sin]-

and th_,ll f_r 10. 11, 1:2. Next, b_ldv S might bc isolated ulation specifically includes a linearly oscillati_g partich,,
and its e_i_mti_ms written, and thes¢, followed by equa- so the method is not restricted t_ a point-connected set
ti_s t_lr tilt. sub,s_'t including bodies 5--12. One might of rigid bodies. In Eq. (5), then, one of the scalars in the
then begin ant,xv;{t the end of an_ther chain of he,dies matrix ,,, is tilt' translatimml w.l_citv of a particle relative
witlwr b_tlv 1 _lr body 71. and progress inward as far to its housing body. As in Iiefs. 14-16, thc dimensi_m of
as p_ssil,h, without ever including m()re than one addi- matrix ,;, is ,3_ for an _-body svstt,m as long as each b_dy
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which upon wemultiplication by .'7 and substitution of tion. and in tilt, process he introduces new operators to
l,]qs (6) and (10) becomes facilitate the reduction of dimension of the filial equa-

tions. Because the appropriate modifications are fully
;7.O.):7 ,;,= .-_:_]-- -7c,.)t_(t) (13) treated in Ref. 18, they art, not included herc.

Vvhnan notes that the matrix -'7.r_).7 is singular, so
E( 1. (13) is not yet ready for mat, hine computation, t'si,g Fleischer's final equations have the form
the idempc)tcnt'y of the perpendicular projection oper-
ators and their supplementary character, one may write ,o)t ,;,t -- °it (18)

, ,_,,_= _?, _;7 -- _'7, '?-) -_ 0 (14) in which .c4,t and _4t are time-varying and of dimension
(3t_-- v) by (3n - v). Computation requires the inversion

and then rewrite Eq. (13) in tilt' form of 5,)t at each integration step (or the equivalent Gaussian
elimination process), and since this inversion is the most

( -'7/3)-_'+ , ?) -_ ,7,:_ -'7:_ -- -'70)/t (t) (15) time-consuming part of a nmjor simulation program, this
reduction of dimension would appear to be a substantial

The matrix (._-c,)_ _:_,?) can bc invertect to obtain improvenwo_t. Yet there are additional computer opera-
tions involved in obtaining and solving the reduced

.),:, :: (-'7.:,1:7 + ,?)-_ _[:_,- .:/.)/t (t)] (16) equations, a,d differences in the detailed structure of
the equations may inapt'de conaputation in the reduced

whi:.h when added to Eq. (6) yMds case, so perhaps it would lw useful to discuss the rela-
tive computational advantages of the seve|'a| forms of

,',--_ t--U,.)-7 -_ _?)_ .7 ['_',- .",i,,,(t)] -_ I' (t) (17) the discrete-parameter system equations. For example,
buried within the matriccs 5')t anct ?'1 in Eq. (18) there

since -5 --:-:? = E from Eq. (9). This is the form of the is the inverse of a matrix of dimension v, When ,., corn-
equation used by Vehnan. The dimension of the unknown prises relative motion variables (as in Vehnan's deriva-
matrix ,:, is still 3n. but the constraint torques have |wen tion), the matrix to be inverted is generally constant,
eli|hi|rated, requiring _nlv one inversion olwration. But when ,,, com-

prises inertial rates of the various bodies, this matrix

As noted eariwr, the fact that \'el.qmn's va|'ialfles in ,,, depends on time. and the matrix itwerse must be obtained

are generally relative |notions simplifies the physical with each integration step. in Fleischcr's work (Ref. 18),
interpretation of thc constraint equation (6), and often the basic dv||a|||ic equations of llooker and .Margulies
results in constant perpendict|lar projection operators t? (Ref. 14t _:rc combined with a modified version of
and ",. Still. tilt, coefficient matrix r;,:) depends on the \ehna:i's constraint elimination procedure (Ref. :20). so
equation variables and accordingly varies with time. so inertial rates art' the variables and tile indicated repeated
the 3tt by 3n matrix ( -_',i--_ _ :,') must be inverted at inversion is required. At each step of tlw integrati|m,

each integration step for the dynamic equation (17). Since Fh'isther must invert a v tw v matrix and then invert (or
tl,' system has only .3n - _ degrees of freedom, one might appl.v Gaussian elimination to) a matrix of dimension
],)pe to redttce the dimension of the variable ,:,in Eq. (17). (3n -- v) by (3n -- ,.), whereas Vehnal_ mu.st invert {or
and itl the l)rocess I'('(ltit't' tilt, size of the t)mtrix requiring apply (;aussian eliminatio_l to) ont, matrix of dimension
invt, rsion_lt each intvgration step. 3n lw 3n. As noted, llooker aud .Margulies appear to

favor working directly with tl,e dynamic (,(luations as

Fh'ischer (Ref. 1S) has d('veloped a procedure for augment_'d l)v tilt' (._mstraint equations, accepting system
equations of dimension (3u-: v) l')y (3n _ v). It seems

accomplishing the indicated reduction t)f the dimension probal)le that selection of ap. optimum approach will vary
tff the prol)len] to 3n - v. If the variable ,,, is partitioned from one applicati_,n to the next. but that for vt,rv COlll-

as .... [,.,_ ....J. with sul_scripts [ and c identifying free plex svStelllS tilt. advantage would lit' with the approach
and c_,nstraincd coordinates, then one may attempt to
ust. tiw constraint equations to find .... in tenns of ,',r. and .viehli|lg equations _ff tl,' lowest dimension.
then retain only that portion of Eq. (17/ involving ,:,r on
the h'ft side (i.e. truncate the matrix ,:, to ,r,t). Actually. In the th,riv,atimls of ltt,fs. 14-18 and 2(1. the aplm_ach
FMscher p_rsues a somt,wl,at differs,hi path from the has been first to writ_, dynamic eq||ations in wlficlk t.cJn-
basic _,quations (5! and (6! to the final equations of too- straint forces and torttu_.s appt,ar, and tlwn (in some
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cases) to use constraint ,,quations to eliminate from the (For this reason Russt.ll calls his method the momentum

dynanfic equations tl:e constraint forces and t(,rques and apl_roach.) This distinction is central to the computational
the redundant kinematic variabh.s. This elimination is question, but not critical to the avoidance of constraint
not accomplished by the analyst before computation, but torques.
in general is accomplislwd by the (x)mputer during

numerical computation. Having obtaincd a single scalar equation ft,r the com-
ponent of H _: along the hinge axis, one next proceeds to

Other approaches have been devised that avoid con- consider the subsystem of bodies 11 and 12, writing trans-

straint forces and torques from the outset, and thert,lLv lational and rotational equations as previously. Now the
preclude the necessity of using computer time to elirni- analyst must inspect the single joint between this subsys-
nate constraint forces and torques an-I reduce the num- tern and the rest of the vehicle, namely, the joint connect-

her of scalar equations to the mmaber of degrees of ing hodies 11 and 10. If this is a 3-degree-of-freedom
freedom. In the co_ ,.t of the Newton-Euler formula- joint, the entire vector rotational equation of the snb-

tion, the objective of avoiding constraint torques for a system 11 plus 12 is retained, hut if this is a rotationally
pt)int-connected n-body system in a topological tree has constrained joint, only those components of the vector
been pursued successfully by Russell (Ref. 19). Kane and equation that do not introduce constraint torques are
Wang (Refs. 26, 27) accomplish this objective even more retained, Whatever the miture of the joint, the number of
generally, using a method descrihed in Section II-C. scalar equations added corresponds to the number of

Althongh neither Russell nor Kane and Wang support degrees of freedom ;_._ded in considering a new subsystem.
the concept of developing a single multipurpose corn- Proceeding in this way, following the pattern of selecting
puter program suitable for a ,,vide range of vehicles, subsystenls previously described, one can systematically
Russell does provide in Ref. 19 an explicit procedure for accumulate as many dynamic equations as there are inde-
constructing equations for simulation of an n-body sys- pendent unknowns without introducing constraint torques
tern restricted as al)ov,,., at all. A simple accounting procedure permits the distri-

butior, l of the angular momentuna of any subsystem among
its constituent bodies, and from these individual inertial

Russell adopts the nested-body concept advanced by angular momenta the inertial angular velocities follow
Vehnan and described in Section II-A, where the 12-t)ody from Eq. (19). The dynamic equations then combine with
s.vstem of Fig. 1 was discussed as an example. Recall that kinematic equations just as they do for the alternativefor this example one may first write the vector rotationa_

Newton-Euler formulations (Refs. 14-18, 20).
eqtmtions of motion for hotly 12, then for subsystem 1!
phls 12, etc. As pursued by Vehnan, this path does
involve constraint torques. C. Genera!ized-Force Methods

Among the man)- methods eml_lo.ving generalized forces,
F'ollowing Russell's al)proaeh , the am..Ivst must ohservt' most are within the framework of Lagrange's equation

that bt)dv 12 is comwcted to body l l by a lil;e hinge, and

then write for body 12 only that component of the rota- d ,L ;L

ti,,nal ,',l,,ati,,n T'=- H '_ parallt,ling the hinge axis. This tl"-'t(_) ;,,----_: o'" i: 1,''.. ,,, ,20,
ax-,fids tht. constraint torques (assuming unspecified rota-

tion about this axis), and it yields one scalar equation where q,. ''' , q,, art, a complete and i_dt'yemlent
corrt,sp_)nding to the single degree of freedom of body 12

• set of generalized coordinates, the Lagrangian L is the
relativt, to body 11. Because the torque T':: is measured difference in kinetic and pc)tential energ.v, and the gen-.
relative to the-mass center of body 12, the interaction eralizcd force Q, is defined in terms of al)plied forces
force applied to body 12 by body 11 contril)utes to T _', F'. • • •. F" anti their inertial p_)sition vectors r _, • • • r" by
and this unknown constraint force must be eliminated " "

lw use of the translati_mal t.tluation F': ::: m,: a'-' (Ref. 19). ,'r'
The mt'tht)d advanced l)v Russell Jetains the c(;mpont.nts () _'_' F'._ i =_ 1, • • • . u_ !21 _
of tht, int.rtial angular mc)menta of the individual bodies ' ' ' q'

as the unknowns, ol)taining angular veh)citv of the ith Lagrange's equation in the form of Eq. (20) is too familiar
bt)dv as nt.ct,ssarv frmn the nmtrix relati_)nshi I) to warrant review and too limited to warrant ath)ption as

the mtdtilmrpost, procedure for discrete-.paramt.ter svs-
,,,_= (I') _ ti' (19_ tern simulation. As notud in the Introduction. restriction
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to a complete and independent set of generalized coordi- in Eq. (21) imply tile presence of constraint forces in F'
nares q,, ' ' • , q,,, is inhibiting in that it precludes tile use and constraint torques in T;, these vector equations of
of redundant, singularity-free attitude variables and ex- motion when applied directly do not have tilt, constraint
eludes nonholonomic systems. (A holonomie system can elimination feature of the Lagrange Eq. (20). The objec-
be fully described by a set of coordinates q,, "', qv, which tire of Kane and Wang is to modif)' Eqs. (23) and (24) so
are related by v eqt|alitit,s of the form fi (q,,'" ', q v, t) ----0, as to sect|re this adwmtagc' without accepting the noted
i-: ]:,''', v, thus permitting, at least theoretically, the limitat.ions inherent in l_agrange's equation in the forn;
dete|'minatio|l of v coordinates in ter|ns of the rem_:ining of Eq. ',20).
set of _1 -- N - _.coordinates.)

, To apply the Kane-Wang method, ont' must first gen-

The generalized forces Qi are attractive, however, in crate the necessary kinematic quantities and rt,cord the
that the definition in Eq. (21) servcs to eliminate from Q; inertial forces F i* and inertial t,_rqut,s T' for all bodies
any nonworking constraint forces, and thus to eliminate of tilt, system. This process inch|des tilt' de|'ivatio|l of tilt.
these unknown and unwanted quantities from the equa- inertial linear and angular velocities v_ and to; of all
tions of motion, bodies of the system, and their expression in terms of the

constrained generalized coordinates q,. • • • ,_i_ and tF.cir

Kane and Wang (Refs. 26, 27) have devised an approach first derivatives. It is always 1)ossible to use the v constraint
that retains generalized forces with this desirable prop- equati_-_ns given byEq. (22) to write all velocities v_and to;
erty, but permits application to certain nonholonomic in terms of N -- t. (say, the first N v) generalized ve]oci-
systems and to systems with a wider range of acceptable ties/i,, " " " , _)_ ,, retaining in general all N coordin-des
coordinates, q,. • • " ,q._ in these expressions.

Consider a dynamic system described by a complete The next ste i) is the selection (by inspection of the
but redundant set of coordinates q,, • • • , q_ subject to expressions for v_and to;) of N - v variables u,, • • • , u, ,.
tile _. constraint equations typified by so that (1), each ui may be written as a linear combination

of tile N - _. generalized velocities /i,, ' " " . 0,, plus a
residual term fret' of generalized velocities, i.e.,_

x,, A,,,_; -_/3, --- 0, i- 1, • • • ,_. (o0). _'_.
i I

_. I"

• . . ;0J-i i-1, ' '' N-_. (27)where A,; and B, are functions of q_, q v and t. If tt; = .'Y. [ri Ui.. _ .i 1

Eq. (22) cannot be integrated to obtain constraint equa-
tions in the form of equalities not involving generalized (where U_i and U; depend on q,, • ' • , q_ and t), and i
velocities, this is typical of a class of nonholonomic (2) each velocity v_ and angular velocity co; may simi-
svstt,ms, larly be written as a linear combination of tilt, varial)h's

tit, " " " ,tin v, i.e,,

lu application to a system of n particles and rigid

_ bodies, one may witllout restriction write the Newton- \_"
E,th,r t,qtmtigns for the ith body of the system in the form v : ,'-', v'ju ! v', (28)

F i + F' 0. _ (23) and
i=1,''' ,n

T' _ T' ::0. _ (24) to'= \_',.,to_u _-to; (29)
_:llcrc j i

F ........ m;a _ (25) This step clearly involves somc judgment on the part of
the analyst, but in specific applications the choice of vari-

and ables ui is not difficult. It is ahvays possihle to choose

T : -I[I i (26) u; :- t_i. i ----1, • • • ,N -- r, but this is rarely the most
attractive choice..Xlore often a judicious choice of angu-

with T , a', and H' refcrcnccd to the mass center for the far velocity measure numlwrs for u,, • • • . o_ , is useful.
rigid bodies. In application to a rigid body, F _ is the Examples in Rt,fs. 26 and 27 are llelpful in t'stablisldn_ a
rc.sulttmt applied force. Bec.'at_st, tilt, constraints in]posed rationale for rids seh,t'tion.
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|;'roJ|, ('1 "'..,'._ point, the application of the method is"q_,ite It is impossible to make a definitive jl|dgment of the
¢_;,, '_ ¢a_,,"'" ,_a_ , relative merits of the many available a_,proaches. It isrCnltine. The vectors v r, _,,, • • ' ,vi_ _,

(i !, • • • . n) al'_,defined fly the s¢'h'cthni ¢,t:variahles difficult to weigh computer time against analyst time,
ll,, " ' " , II_ , in l':qs. (28) and (29). Tii(.'se vectors are particularly in tim fact, of absohlte time constraints and

liow lls,'d to dr'lille' the "'gen_'ralized active forces" limitations of personnel assigned to a given taxk at a given
time. Even with a given "cost function," the optimum
al)proach varies fronl one dvnaniic svsteni to tl,, next.

K. _,'_"(vT'F' _"T'),, # i, ''' .N ,.
a I

(30t %Vitllin the framework (;f full v programnied nnllti-
pllrpose digital oonlputer progranis, which rt,qllire the

alid tilt> "'generalized illl'rtia forces" nlinilnllnl of i,,ilal)'st tilne and tllougllt, tilt, work of
Fieischer (Fief. 18) is perhaps most useful, since it conl-
])ines man)" of tile attractive features of tile earlier works

K;: = _' (v_"F;: " a);. T'), j -- 1, • • • , N - _ of Ilooker and Margulies (Ref. 14), l/o])erson and %Vitten-

' (31) berg (Refs. 15, 16), and Vehnan (Fief. 20). It is possibh'
t-1 -,.::,.t Fleischer's program would run faster if relative

Kane's theorem (proven in Ref. 26) has the form inotion coordinates were employed, but this would intro-
duce the judgment of the analyst into the simulation

K;-: K'7=0, i---1, • • • ,N-v (32) process.

There nmv be some question concerning tilt' desir-
Kane shows that tile basic first-order dynamic equa- ability in some organizations of developing a nmltipm'-
tion (32) does not involve the unknown forces and torques pose program. Russell (Ref. 19) and Kane and Wang
required to maintain the constraints of Eq. (22). Thus tile (Refs. 20 antl 27) offer procedures that seem to lead to
conlbination of the N _.dynamic equations of Eq. (32), more efficient simulations titan are available with the
tilt, v constraint equations of Eq. (2.2). and the N -- t. kine-
matic equations of Eq. (27) constitutes a complete set of more highly formalized naethods cited above, but they
2N - t. first-order differential equations. This is the mini- require individual programming of each pro!_lem by a
lllllln nulnl)er of equati(nis consistent with the selection capable analyst, which maybe an ullac.ct,ptal)ie col,straint.
of a svstcin of N generalized coordinates subject to a. con-
straints. In application to the point-connected sets of n III. Hybrid-Coordinate Method

rigid bodies of Section II-B, N is 3n, so Kane's equations A. Vehicle Mathematical Model
are the same in numlwr as those obtained by lhlssell's

approach (Fief. 19), and the same as those actually inte- The eOlicept Of tile ]lvbrid-coordinate Inethod ch'lwnds
grated in Fleischer's program (Ref. 18). If the constraint upon the possibility of separating a given vehicle into a
equations are holonomic (so Eq. 22 is integrable), it is pos- number of idealized structural subsystenis, each of which
sible to replace t of the first-order differential equations may be classified either as a [lexibh' aptwnda'..'e or its a
by algebraic equations. When these can be solved ex- rigid body or particle. A flexible aplwnda_eis by present
plicitly for _. coordinates in terlns of the N-- v remain- definition a linearly elastic strnctilre (devc'lopillg ela.qic
ing coordinates, the restllts can be substituted into the stresses in proportion to strahis_ fin" which "small" dcfor-
dvnanlic equation (32) and tile kinenlatic eqnation (27) mations may be anticipatcd (so elastic stresses rt,lnaili
to obtain it itlinilnillll set of 2(_"- 1') first-order diff('r- proportional to dt, fornmtionst. In lliOSt cases. )oterlla]

ential eqnations, energy dissipation may be represented by modal damping
(Ref. 30), although discrete dampers can be accommo-
dated. The usual definitions of rigid hotly and particle

D. Summary are retained.

The obj,ective herc has been to o,,itliilt' the several
approachc.s to the fornullation of equations of motion of In its present stage of th,velopmt,nt, this metl,od is
discrete-1)arameter s)'steins in sufficient detail to develop formally restricted by the rt.quirl'nlelit tlil, t each tl_.xihh,
seine apprcciation of tlw differences in points of view, appendage tie attached only to a l'i_itl body. or to more
and to stinlulate interest in deeper inquiry. For a conipre- than one rigid hody it thosc bodit,_ art, tlicmselves inter-
hensive treatment of the st._l)ject,the reader is referred to connected in such a wa)- that their rclativt, motion c.aniiot
tile el,ted works, in(hlce dl'fornlalion of tli_' fh'xible ill)penda_e. Tlilis the
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appendage cannot properly be the only connecting sta'uc- ment such ,is B_ were attached as well to tile' block shown

t,lre hetwt'en two rigid bodies, but it can be hinged to two within the dashed lines, the hybrid-coordhmte method as
bodies if their relative motion is restricted so as to permit developed in this report wonkl be applicable only by
the appendage to accommodate their relative motion by ignoring the mass, s on ont- end of the appendage and,
rotating without deforming. Figure 3 illustrates several instead, applyit_g a:_propriate forces and torques to the
examples of idealized mechanical assemblages that might end. This represe|_ts some distortion ,f the method,
present real or imagined obstacles in modeling for hybrid- and jeopardizes the rationale to be applied to modal-
coordinate analysis. In each of these sketches the strue- coordinate truncation.
ture drawn as a trnss or gridwork is supposed to be snb-

stantiallv more flexible than the solid components. Figure 3d ill,_s_rates one of the ways in which a flexible

appendage ca_ he attached to two rigid bodies. Con-

Fig||re 3a bears some resemblance to a dual-spin vehicle straints bet-veen bodies B, and B: are such that tlteir
with a flexibh' antemm, two flexible solar-cell arrays, arid relative motion results only in the rotation (not in the
two flexihh' booms on the rotor. Here the de-spun plat- deformation) of the appendage A. It would not be desir-
form B,, the nutation damper mass B:. the rotor B_, and able in this east, simply to inchtde the little body B: as
the contents of a spherical tank of ttuid B, are idealized as part of the flexible appendage because of the discrete
rigid. Suhstructure,; A ', • • • .A-' are idealized as elastic damper connecting B: to B,. The attachment between a

appendages. An arbitrary control system determines the flexible appendage and at rigid body must be consistent
relative rotation of B, and B :. with the use of data from with the assumption of modal dampin_ of the appendagt.
sensors anywhere on the vehicle. In addition, the entire if modal ct_ordinates are to be obtained for secured-order
antenna structure A' may be controlled to rotate on the equations.
base B_ without exceeding the capacity of the method.
But if the dish portion of A _ is controlled to rotate relative _Vht,n two d!flerent l>fints of a th.xihh, :drllcttu'e art,
to its support tower, the model must be modified if the attaclwd by discrete dampers (c'.g,. tlashpots_ to a rather
cquations t_ follow are to he applied. An individual rigid base las in Fig. 3e). one mi,dlit assume tlmt an addi-
appendage is permitted onh elastic defonnations, so tional rigid body (such as B_ in Fi_. 3_'_ com,.cts the
antenna dish and tower couhl not togeth('r 1)eone appe,d- slq)port p.ints. If tiffs asmlmptitm is nnacc_'l_tal_l,', and a
age if large relative rotatim/s are prescrihed. Y('t they discrete da1,q_ing Iiit'tlial|iSltl IVtllst b_' incorp_rated withil_
cannot b.,. treated as two separate th'xible appendages, tl,' al_p_.|ldagt., th,', one can find ,,,,dal c_rdi|;at_.s :mix
since each appendage must be attached to a rigid body after re_vriting tlw t.qu;.tti_lJs _f motion as first-_rd,.r eq,,t-
(and not to another appendage!. The only recourse is to tions. Altt,_,lglJ n_odal transh,r, mtio,s ,ff flrst-c_rder eqt_,t-
model the tower as ont. or mort' rigid 1)o(lies. in wldcl_ titans x_ith arhitrarv d_.:npin_ are tr_.,ltt.d it_ %_'¢ti.|| III-D.
ease the derivations of the foll,,xvin_ s_,ctions continne it is tt.:flatix,..h-as_nm_.d i_, S_crib), III-B ll,_t m,x dat,p-
to apply, ing il_ tl, app_.nda_' .,av l,t' I_l_)(h'h'd as cla_i(. _l,)tlal

Similarly. in Fig. 3b one _m_st treat tll_' tWO flexible
antemm st'.'ttctt|res, togetl,er with their interc_mncctin_ it in c_id_'ttt tltat t],,. _,_l||,di_t,s in l],is s|'t.ii,_it x_ili l}l}t
rigid body. as -_le flexible appt'l_dag_' ias indicated by apply t,, c_mq_h._,,ly l/,ellt'l',d m.d_4s ,_t spa<,, x,.l,icb.s. _tll_l
the dashed lines!. A given th'xildc appendage cannot be even _vl:en .'.q_l_licahlc riley u,a, _,ot c,||stitt|u tl, _q)ti-

attached t_ txvo ri,.zid bodies for x_l_icll relative motion ,ntm_ appr_ach t_ sim_,latiu_. Igor _1,- sxstt.t_, _,t Fit:. 3¢. i
deforms the appendagt', so the massive block lwt_veen for exampl,., it |||;iv 1, _pr_.b.ralde t, i_n:,r,, _,_flir_.h tl,
the two antemm dishes cannot lw isolated as a rigid l_d}. mass in tl,, truss str,_tt_r,, and t,, tr,.,a tl, _ xel,icl,' .t,
and must instead be al_st_rlwd as part of the lar_er Ii|rce di,cr,.t_ rit_itl 1,,li,.,. p,.ri,q_ _,_,,, iu ;i l,t,i_t-
appendage .1. t_l_lv.'t.tud t_poh,_i_al tr,,,, c_mfit_,_r_di_,, if tl,. t,,,_ is

',l,,_rt and l-t_,.'it_.li_.tllv ,,tilt. _ di',¢ r, t,.-p,,r,,mel_ r ..i_,,,_-

Again in Fig. 3c one is strictl.v prechldcd from treatintt lation _d tl.. _.lticl_, i_, l"i_: ]_t _,,,d¢l. ,m tl.. _tt,,r l.i_|¢l.each Of tlw thre¢' blocks in the system as a rit,qd l,od.v: t!-,,: }w I,q_.h,_,l> i_,_.thci_.l,t. _1 tl,. r,,,,,It, u, ,_,ld t,, i_,h,ri,r

bh_ck sl_own _ithin the daslwd lira's ._t be inchKh'd as to a mucl, h_,_ ,.\lWl,,ix, - l,xl_ri_l-_,,,,r_li|,.tt,- ,i_,,_i,_ti,,,

a part of tla, appendage. I]t'ca||se of the' laru,_, relative

motions p_'rmittt.d bt't_t,en B, and B_. o_e tl,., s _t l_av_. -I'1, tra_liti,q|J1 pr,t, ti__,_,t ||_r|,,.d-_,_l,.-t,_,,r, liu;_t,
the opti_m of inch,cling B: pl,.,s B x_ith the flesihle str_w- tra,,,h_r|,,.tti¢,_l ,,f th,. ,,., ,,_,l-,,r_h r _q_mti,_ ,d _,,,ti_ ,,t

t||rt, i|_stead of the ld,,,.k indicat_.d. I_ ,m artit,lated ,.h- tl,,, ,._tirp v,,l i<h. t,,d,I t,,_' t,, appli,¢l dir,.tth t,, any .t:
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(o) "/_'_ i _c)

I ANTENNA A I

IDEALIZED Lm_ I -'_.._

_©PELLANT B4 ----"_._ _

_e)

I_ ROTOR _2 FL_×iBLE TRUSS A

RICID B(DD_'BI _"'I_{ '-T" '=T" 1 2

Fig.3. Examples of models forhybrid-coordinateanolysis
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....... where h istl.'rrfc,reJluufr.mt,_dl)odvB and basis{b},

-": ""-.. and toi.,,tilt,inrrtialangularvrloc.ityofh.l)ifferrntiating,

'/ "'" E(1. (41) provitlrs (_vith tht' use uf i':q. 38 again)
/ FLEXIBL[ APP[NDAGE A \"-,

/ t_°D'Ls_1'+.",,) \
/ \ 'd_ "d-

I +oovA / +P.co". ,-77(ci R_<to'. [¢+× (c : R1]

\. ',/ 1_°2 I _ /

\\ .._ / "_'_'_//'.. toX"w I_,q.(37)mayhriitili/<,d,i.,tmgBt<,l,e:,.onstailt,obtain

+ •_ x [,.,"<,(b}"(c+ R)]
I

_ XV..__...A_ 0 ,FIXED. IN ,) ..... ; (b .._'._{ ',)1 (C • r_) (43)

_" (INERTIALL:F:XED)O To rxprrss tiffs rt'sult in matrix trrn_s, one must obtain
the matrix t.qnivalcnt of _, vcctor cross l_r(iduc't.

Fig+ 4. Discrete-parameter appendage

sub-body coordinates 1"()I'two arl,itrary vrutors V al.1 W, exprrssrd in trrms
of an arbitrary vrc'tor ba._is {c}. the, vrrt_r rro_ l)r_(hwt

If tilt' prrstq_crscript i oh,hairs thr int'rtia,! i't,ft,l'(,li(.'c illii,v hi, _vritti,n as
framr, Eqs. (35) and (36) nmv lw combined as

V ". W ',_}LL-_+--:- ',c',' XW ,t'._', _:X_"

,,;- ,,l: .,r 1 ,,.ht.,.t,r, _ ,,,,-_ E ;h: jdr-X + (c : R) ._ (r' , u')

_,' _ . X', X_ ,

"l'lit' lir+t tt'illl ill bi'.t'k<'t_ ill I':<I. _:3+I i._(xvilll lh,' n_r X+."
ill l':tI, PiT+qlul+l_ X'

,1,, ,., r" ' 'd/: _li .\:) {i} (,lll_

_" J _" () V (If+
si.vr tl.' ilu'lliaJ tirol' _h'ii_.tlix_' _t {i', ir._/l't,). (litrail L X" X'. 11
dud a inalri\ th.rivati_' surll a', X i_ j_",t t!.' ll,llrix _t

V . _,X "11.,, ll,. _l',lllls i(l,,lititx
"!1., ._,_,..I l_.ll_ ill l,l,. k,,t. il_ I:, i i,+!l_IlhtV Ill' id,lam,,<l

IVillli fill' I1'1' ,it' I.:,I. 1_, tliilii _i:Xl' It { _ l,"l,

_/ i/ t,,ll,,v,, tlit,lil tll, _,l h,t illt'lllilx '% ' Ill II + V. 'lilt'

,It !c Ft ,It _I.' |i ill ill. + ll/i t il' lihl, ,ilil,l,it,,l .... _1! .t I I,_ I ill.i!li +, I+ lllt"_l'lit's llll'

1S JPL TECHNICAL REPORT 32-1329

..- _| .,...... ,li,,---"..... ,,.-........ -'-- " ....... " I ..... "" -"$,
l%,]



c.orr_.sp_mdi_lg skew-synnnt,tric 3 by 3 matrix, a.,, in _d-' "d" "d
l']cI. (tl), ti.'_nt_l,_ld this report. Note tilt' ust'fid identity dt--7 (r' _-u') -- _ u" q 2D." '- -_- u'

X% -.......X_ (46) _ l'l ..... [_" ", (r" • u')]
t,d

t_r any tihh'd inatrix, ]wcausca_Lsktm'-..symnmtry. _- _ II" . (r" -_ u")

F'" 1Equatimi (43) _'a_ ,.,w he written (with the definition _ _ _'" l_dt u_ '_ rt" -: (e -_-u")to {b}r,,,) as

-_ to • [to._(e + u")]- . (r' t u')

,It-' tc : R) {b}' [i: -_ _7£, + _,';;,(c+ R) + 7,,0" -_ R)] (4s)

(47) wlu,re 12" is the angular vehwitv of the {a} frame rela-

which provides tilt, second tcrLn in brackets in Eq. (39). tivt, to tht, {b} frame, and it has lwvn recognized that
the time derivative of r" in reference a is zero. This result

is now to l)e written in terms of tim vector array {a} and
The final term in Eq. (39) can be obtained in similar

the matrices defined in Eq. (37). If_D." is written in the
fin'm, although the vector,; r _ and tr" are written in basis
{a} in Eq. (37). Tlw.difft,rt,ntiation then is perfi_rmcd in {a} basis as
two stages. First, D." =- {a}r_.._'' (49)

dt--:-"d-'(r'-_ u:') : -_., (r" + u')._'d-' 2_ " -_l'd (r' ! u') and Eq. (341 is used to write

+ to " lto " (r' _ u')] ! _ >:(r"! u_) {b}T={a}"C (5(I)

is obtail.,d from Eq. (,12), ;u_l then the derivatives in so that ,., is written in the {a} basis as
{b} are rt'placed hy dt,rivativt,s in {a} 1Lvusillg Eqs. (41)
;uld (42), and replacingi Iw h and b by a. The result is ,.o- {b}r,,,- {a}rC,,,

then Eq. (4,'S_iu'ccmu,s

,It it u! {a}'lii' ; :2,.".,"':t'i ,."i"_"(r't .') ! ::"(r_ ! .')
¢._../ _ g.,,,,_,.a, ¢_..J P,,...J

t 2(C,,,)ft' '....0((?,,,)3,,(r. _ u') : (C,,I(C,,,I(I .... _ u")-_ (C.,:,)(r" . u'_] (511

_\l.,u I.':is. (,_1t. (17). and ( 1(1_urv t.,,,_d_im,d i_ Eq. (39). tlw tim,t, diitm-m_! v.t.t_r lnises tfl tlu'sv _'_luati_ms are almn-
&mt._l i_ t,tx_.' _d l_:tsis {a}. _._ti,_ 11ml this ir_also tl., _mtur;d basis ft.- 1"'. This rt,tt_,ir_,s tlu, tls_. _fl I,':1./.-'_}t i_ I']q./.17).
aml flu' ln_,alh'! _s_, i, I'_1.(.101(1t tl,t, r_,lati_mship

Ill' {b}' _-, {a}' (:_-, ¢52_

I I ,_,.,'_' _-_i. !1.' d,_'cli_,_ t'_si_., Ill;illiX r_.ladi_R I!," luul,, B t_ a_, i_wrlialtx fix_,d '.,,t.l,, In,sis. i._'..

{I,} ,-,{_1 (53)

"l ll,' I_"_lllt Ill tilt ',_' .slll_',lltllli,.lts ilfl_ I'h I, 13!1, is tl.' x.'ct,,t _'_ltl;tti,_sl

',a:' i." {aJ'm I(""{ ' ('[i". "_.( • ,.,.:_ 11) 751!,. i1.1 ' ii "2:.r'fi. ij i_j"(r"..',

• '" t_ u; '2,(',.itfi . 2{ '. ,i._ (r' :., . (C',,!_(.',,i(r u_ _('/,,(r' . _I {.51,
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wliicll t.lliphi._s tile new matrix svml)ol F _ as dcfined by

F ._-:: {a} r F._ (55)

()n,' may now record the corresponding matrix t,qimtion (in vector basis {a}), either by inspection of Eq. (54), or lW
f,unml dot-mu!tiplic.ation bv the vector array {a}, noting: that the relati,)nship ...................

{a}'{a}' [-, '{a,a:a;},- 0 1 E (56)

a; 0 0

follows from the introduction of the dot lietween vet,tot arra,vs to imply the multiplication of vector arrays follow-

ing the rules of matrix multiplication, but with dot-multiplication of the vector elcmcnts inside the arrays. This
n,)tatit)z_ is sometimes com't,nient for notational l)ookkt'eping, but even xvith,,ut tiffs artifice one can simply record the
matrix equation isomorphic to the vector (,quation (54). In the proct'ss, the futm'e direction ()f the derivation may 1)(,
anticipatt.d by the replacement of the scalar m._ with the matrix m" - m.,E, with E the 3 1)y 3 identity matrix. "l'he
desired matrix C(luati(,n is then obtained (after some factoring and rearrangement) in the f()rm

1_":_ m_{c:[(-):__ _;_ '2_d"__g(c -"R)- (_+ _),:,] - (7_-_i7")(5'_+ C<;,)
_: [(C,,"_,)(C,,'_,)._ 2(C,'",)(_.,)_F[_,,_,,](r._+u.,).: o=[_,, ! (_,,,)]:: _ il._} (57)

20 JPL TECHNICAL REPORT 32.1329



With Eq. (34), this yields tile matrix equation

iI

;.- ->2c';_,__- c"_" _ ;_'w-_ i, (_4/
1<": 1 ,,t 1

l)ittercntiation _f Eq. (63) in reference frame b similarly provides tilt' vector equation

ih_+.+;:_:__ia_.,.t _ ,,+,.+_..++ +'5".,,_ ,,+,,,.,-++,.+.,,__:,,,,;,I <,,_,,.+.,,'t _:,,.,'+,_."+_"+_.,',,+",,"3+ It,>_++
,'1 1 .'+ 1 ,+ I ._ I /; 1

Thc matrix counterpart in basis {b} for this vector equation is

71

_+:.... C_[ _ /c'ii" + _'_"_. /c',, "_+ 2+."!'' ,_ tt'"v" + _" _" 2 /_"t''] + e (65)
1 _ I ,', 1 s 1

Now Eqs. (64) and (65) may be used in Eq. (57), instead 'd
of sul+stitttting Eqs. (61) and (62) in this equation, tllereby ".....T+' = _ (H+)
avoiding derivatives of C. Alternatively. one cau avoid the +d id id

relative angular rate ++"and its time derivatives entirely = d-_-(l'.ta+)--I+, t-_-to.++ t-_-_!_i____....................._
by the substitution of the kinematic identity (Ref. 16)

+,+ _+_(_ _
-I"'t-_to" ' \dt 1`4to_Xl'+-I+Xm'_/'m'_

_,,= c c, (66) .......... (69)

anti its consequence where the symbol "d/dt denotes differentiation in the

"_ _7. (67) reference frame of A.,. Here use has been made of the
.q" = i_ C_ +- C counterlmrt for dyadic differentiation of the vector dif-

ferentiation relationship of Eq. (38), namely

With these substitutions in Eq. (57), and with Eqs. (61)
;.,.nd (62), all relative motion between bases {a} and {b} /,d r_tl
is expressed in ternls of the direction cosine matrix C d-"-t0 --- "_ 0 _u t,tot_ X 0 --D/, t,tot_ (70)
and its derivatives. Although this option mt:y be optimum

in sorer applications, it would seem preferable in most with D any dyadic and ]a and f._,any two frames of ref-
prattical cases to avoid {:T,and C, and therefore to employ erence. (This relationship can be confirmed by writing
Eqs. (57). (64), and (65). the dyadic in the form* O :- D,,t_e,,e_, and then applying

Eq. (38) to the unit vectors e,, and e,+.)

Since the st|b-bodies At, " " " , A,, are considered to be

rigid bodies rather than particles, the translational equa- The term I" "-':to.'. to' in Eq. (69) is zero, since the
tion (57) must be augnwnted by rotational equations implied operations inchlde dot..mt|Itiplyingbyto'avector
such as orthogonal to to_. Equation (69) is further simplified by

the constancy of the inertia dyadic of the rigid body A,
T' = I_I.' (68) in the reference frame of that body, i.e., ('tl dr)I" is

zero. In rewriting the correspondingly simplified rota-

for typical rigid sul_-lmdy A.,. lh're ti" is tile inertial an- tional eqt|ation, one may expand tilt, inertial angular
gulal n_onlenttllil of A.+ referred to the nmss center P.,, velocity to" of A. by use of tilt' "chain rule"

and T" is tile corresponding resultant torque. The rules r,tor, = r,tof, + r,<or, ut.... 4 /, ,to', (71)
of vector differentiation (see Eq. 38) may now be applied

to ]t tit to its t,tlllJX';.ih'lll I'* ca', W]lere I' is the lnilss- Throughout this rt,lx_rt,h_wt.r-case(;rcck indices ranRe ill vahn.
center illcrtia dyadic of A. and to" tilt, int, rtial angll]ar from 1 tu 3. and whtn tht.se intlict.sart, relx.att'd in a given tcrln,
,+ehwily Of' A,. The result is sumnmtion t+xcrthe.so value,, i_ ilnl+licd.
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where [,. • • • ,[,, art, n arbitrary frames of reference and where /3" is the 3 by 1 matrix defined by lB"= {a}rfl ".
t,tor, is the angular velocity of frame l, relative to frame This substitution puts Eq. (69) in the form
f,. llJ this ease the chain is fram the frame of body A., to

the >_rameof ,4, to the frame of B, to inertial space. Since - 'd l'_" }.r/_.,)the rotation of A., relative to A is due only to "small" T' = I_'_-_ - (_ + -_-{a
structural deformations, this rotation can be represented

by the vector lB.'= fl_a, + 3" "a fl_ _a .r ",. , .(_-_ fl"/ .,a_ + t3:, ,, where fl_, fl_. -:' (co -; rz,, , _, }_./__)_._=I" -_ {a }'/'t"t
art, three angles of rotation about orthogonal axes a,, a_, a:,.
This representation is strictly applicable only if these (73)
rotations are infinitesimal, but this is nonetheless the com-

monplace assmnptitm of structural dynamicists. Cease- Again the dil_erentiation is accomplished with the help
qut.ntly to.' in Eq. (69) can be replaced by' the use of of Eq. (3S), and simplification is afforded by the assumed
Eq. (71) to write smalhwss of/3" (since only first-degree term_ in /_" and

to" -- to _- _" -_ {a} 7/'_" (72) _" a,e retained). The result may be written as

• [_ "d a,, (_ + a,,) a,, (_: ,_ ]T-=,_ Ldt ___ + x +la}"_"+ +a°),,/a) Th."
+ (to + a") "< I"" (to + a") + (to + l'_,) X I" {a}:/3" + {a}r/_ " × I"'tto • a") (74)

If all vectors are now written in terms of the vector arrays of the most convenient basis, with the use of the defini-
tions following Eq. (49) together with

T.'_ {a}rT ,'

and, with the s_lmmation convention,

I.'-=- l_tja,,at_-=_ {a,a.,a: } 1".,, I_.. :_ a: =_{a}rl"la} C:5)

I.., l.',.: lT,,J a.

the vector rotational equation becomes

{a}r T ' = {a}rl " {a}" [{b}r,;, + {a}r_ '' + {b}r,,, ..'<{a}r_" _ {a}r/_ ' + ({b}r,,, + {a}r_r ') ,',i {a}_/_ .']

+ ({b} r,,, + {a}rnq X {a}rl ' {a}" ({b}",,, + {a}rn ")

-_ ({b}'r,.,+ {a}r_"),'< {a}rP{a}.{a}rfl ,'._ {a}_/_" ,',, {a}rl"{a).({b}r,,.+ {a}r,;r') (76)

By using Eq. (50) to obtain every vector in basis {a}, and applying the matrix representations of vector cross-
multiplication (see Eq..t.1) and vector array dot.multiplication (Eq. 56), one can obtain tiffs _ector equation in the
usefid form

{a)rT' "= {a)" {l"[C,:, + (l" + (_)fl" + iJ* + (_,,,)fl" +-"_"/3"]

[(_ + i_,,]x_tc,,, + a0] _ [(c,,'Z,)+ _',1_.h" + "_"_' to,,,+ _"l) (77)

Now the iso,norphic matrix equation can be written by ,h_spectio_t (or _btained formally by dot.multiplying by {a}).
In the process, the identity of Eq. (4,5) i,_;applied whenever it seems convenit'nt to have the most obviously unknown
variabh, available for factoring on tlw extreme right. For examph,, in the last term the unknown defonnation/_" must
appear on the right if it is to be faet,ared out with the term preceding it, so the identity

fl, t. (c_ + a,,) - - [t. (c,,,* n,,)]"/_" (Ta/



is used. Her(' tile tilde outside the square brackets is to be construed to apply to the entire 3 by 1 column matrix within
ti,_st, l)rack('t_. With this substituti(m, t].. matrix equation corresponding to Eq. (77) becomes*

.... "-' ,-.., _., _.,1" z.[c:,:,_,',.,_ ;_.1-_[r-(c°,)+(c°,)r-, t,, + r- (rc,,.+v::")~]_ _
I_._."C...+[(C'_,.)+_"]I._[(C,..)+_._ "1 (79)

Again it sh.uld by notvd that thesv rotational equati_)ns ca,, with the use of Eqs. (66) and (67), lw written in a form
not involving o.", should this be desirable in a special case.

In most applications, it is convenient to accept LtlS. (79) and (57) as the rotational anti translational e(tuations of
motion, respectivel.v, (ff l)odv A,, with E(ls. (60), ,'6i), and (65) substituted into Eq. (57) to accommodate vehicle mass-
center motion relative to body B. The result of this substitution is recorded as follows, with the temporary convention

that Z-means the sum over k ranging from 1 to n:

- 2.."i,,.:J:,'t, - C_C_,_. k+ [_ +__(C_)]..' . "_t_'u._-- 2C_C"'6"_-_J'.k- o._wzF_._

+CgU(R+e)--C_'_CT_tJ, u_- !(C,,"_,)(_,,.,)-_2 (C,,'_,)(."d")+_"_](r+u")} (80)

Again the identity (C,,"_,)_ C'_C r might be substituted, and also the consequence (C,,"_,)(_,,_,)_CggC r.

Equations (79) and (80) constitute the most general
formulation of equations of motion of an appendage sub- F" = m" [(-)X + ii' - -_ ii_ + _7(_i' - -_:_ fi_)

l)odv A., to be derived in this report. These equations art' -- (R + ?") t_ + _'(u _ -- _y._ u_)
applicable to a sub-bod.v of an appendage that is under-
going small deformations while rotating in an arbitrary + _'_ (R + r' + u" - Ztt_u_)] (82)
way (as described by C and (.).")relative to a base B sub-
ject to any translation and rotation (as described by )( These equations still permit unrestricted motion of base B.
for the vehich' CM and (-)and ,,, for body B). Any number
of additional appendages or articulated moving parts may The forces F _and torques T" that appear in the basic
also be attachcd to B; these internal motions will influence differential equations (79) and (80) of sub-body A, include
_-)..... and e. terms due to structural interactions with neighboring sub-

bodies of the appendage A. These interactions art, repre-

in practice, the generalit.v of these equations is rarely sented here as linearly elastic and viscous forces and
required. Only in the exceptional case (e.g., the scanning torques, so the.v are proportional to the deformations
antenna) is there a nonzero _).",st) C is usually constant, and deformation rates as represented by u _, • • • . u",
Then there is no theoretical objection to replacing C by fl_, . • • , fl" anti their first derivatives. In practice, ;'iscous
the idcntitv matrix E, particularly if there is but one damping terms are often unspecified m,til transformation

to modal coordinates has been accomplislwd.al_pendage attached to b.d.v B. For reasons not yet ap-
parent, it may be computationally desirabh, to adopt the
view that all bodies B lmvc only one appendage, even The re._ulting approxinmtion is far from perfect in its
though thc appendage may in some cases be composed representation of structural behavior. Even whcn the
of several pliysically distinct structures attaclwd to B. nmterials of a compl.ex structure art, essentially linearly
Then [' is zero. except when a statically unbalanced rotat- elastic, there may be sufficient "play" in the joints of the
i_,g rigid bod.v is also attached to B, or a secondary rigid assembled structure to jeopardize the assumption of linear
body can translate relative to B. t,lasticit.v of the compositt' stnwtun,. Furthermore. thc

assumpti_m of viscous damping is not strictly in conform-

For tht' simplest configuration, with C ....I" and c ':-0, am'e with the performance of even the simph'st stn_ctural
thv equations ()t motion (79) and (80) adopt the form ch,mcnts. But for comp!cx structures lacking discrcte arti-

ficial dampers, the assumptions of linear elasticity and
r, = v (,:, �ii,)�[_,,_ + _' - (F;I)]b'+ ,_v_

TIw identity (_'_)--C7C' _h_,uld pcrhzq)_be tmtctl, althtmuh
(81) thi_ .uh,titut.,n int. Eq. (TY) ,ct,m, ctmqmt,di.nall.v in,.fliti,.n.L
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viscc_us modal damping are almost universal practice ill nition, since the matrix dimension is ahvays clear from
structural dynamics, and these assumptions are reason- the ccmtext in which it is used.
ably well st,pported ILv vibration test data (Refs. 31, 32).
Tht, v are accordingly the assumptions adopted in this

The operators x.:,,, and -",,c serve to distribute a given
n,p_rt. 3-row matrix into alternate 3-row partitions of a larger

matrix, ha,,'i]_g perhaps 6n rows. F'or t,xample, the expres-
Structural forces and torques in each of the equations sion *r.. C_.)X is the column matrix

t.vpified by Eqs. (79) and (80) therefore may couple these
equations to those of every other sub-body of the ap-
pendage. The most convenient method of recording all [(C_-_.;(')0 (C_-_'_) 0 • '' (C_-_) 0]"
the coupled translational and rotational equations of the

n bodies A,. • • • ,A,, is with a single matrix equation of which, by inspection of Eqs. (79) and (80), must appear
dimension 6n. as part of L' in Eq. (84).

Because interest is focused presently on the appendage
The operators _j.,,','7"and -,,"r: are. on the other hand,deformations u', • • • ,u", fi', • • ' ,/3", only terms in

these variables will be written on the left side of the effectively selective s_nnming operators, since, for exana-

appendage matrix equation. The single 6n by 1 matrix ple, when multiplied by a 6n-row matrix they sum respec-
tiveh" the odd- and even..numbered partitioned 3-row

q--_ [u _, u._, u_. fl_, /3.1../3_ u_.__- • /3_I]1 (83) sulmmtrices of the 6n-row matrix into a single 3-row
- " matrix. As a specific example, -..r _/"provides the 3 by 1-',%, .

cohmm matrix obtained by adding i_' -" il_ _ • • • -_ i_".
fulh" characterizes the appendage deformations.

The constant matrix M' in Eq. (84) is now most easilyBecause the equations have been linearized in the ap-
pendage deformations, the matrix equation must have the written in terms of the new symbol 51, defined in terms
structure of 3 by 3 partitioned matrices as

At'i i _ D'd I-_ G',i- K'q _ A'q=_L' (84) "m' 0 0 0 • • • 0
0 I _ 0 0 ''" 0

where by definition D' and K' are s.vmmetric and G' and 0 0 m: 0 • • • 0
A' are skew-symnwtric. Inspection of Eqs. (79) and (80) M = (86)
reveals that 31' is a constant symmetric matrix, but G', 0 0 0 I _ • • • 0
A', and K' depend on the variables .... _", and C. The ......

matrix L' depends on these variabh,s and in addition on 0 0 0 0 • • I'-'-
(-), :_'. e. and the external applied forces that may appear

it', F" and T'. "l'ht. matrix D' accommodates damping in Now M' can })e recorded as
the structure..

M' - M (E - ".:,:,,_"_.,,3t '_lt) (87)
The detailed representation of the 6n by 6n coelI]cient

mah'ices M', (;'. A', and K' and the 6n by 1 matrix L' is
facilitated by the introduction of the Boolean operator l lere E is-an identity matrix of dimension 6n 1)v 6n.
matrices and III is. as previously, the total vehicle mass (recall

:," _m" 211_.The, matrix M may be recognized as the
inertia matrix that would be involved in a calculation of

Yr., _: [Ig 0 E 0 ... E 0] r _. (,'55) cantilever modes of the appendage. This interpretation
x..:,,r-- [0 E 0 E • . • 0 El r _ will be explored in detail in Section III-D on coordinate

: transformations.

where 1" and 0 are 3 by 3 matrices, the former being the

unit matrix and the latter the null matrix. In the present In expansion, 3I' appears in terms of 3 b.v 3 partitioned
application the matrices _:,, and -",r will generally have' matrices as shown in Fig. 5. Note that M' is a symmetric

6ta rows, 1,ut 'this restriction is not embodied in the deft- matrix of constants.
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0 0 0 I'-' ''' 0

0 0 0 0 ''' I"

Fig. 5. Inertia matrix
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Ih't,,l,. r,.c.,,r(lil_ il,. lii,itri\ (7' il_ r\p,liidr,! fOl'lli, it i_ ll_,.tlil t,_, \,itiiilil. tl, <,,,Ill, i,!_t ,,I il_ 1],t .el ill ,,,lii,
ch'f,tll. It i, rxidriii tl_._ti"'itl"Lr '.._ lilll" (" c'ltali_c'_ tire tli.illtth'i' <it *,tllll.'tlllt' ill thl, c_)r!tic'iri_i. -_' t_, , t.iliiill,lti_lli i,

il_tlictltl Ill It,,' ,l_'ci,ll c.t,_' l_lr _lliclt (" /; ,llltl _..I (I. |t\ I'kl_.,_iclill_ till' lil,.iflit'l .... 11,'fill<l, _ii.it

(i -<I.- I I ,.. ,,I - I I ,,, ]

]"_ I 1 I I) , 1. I I ,.I'_ . _1 - (I', ..... ,. - -

(I -- I - I -I. - I_ - I ..... It

Tl,l._ il i_ trident that thr ._tlli] lit tlil,_,t • thrr,., iil,ltiltt._ _igliit.xitl_ il ;J }Iv 1 lii_itri\, t],c. c,qrt,l'ltq_diil_ _]<c.\_,-

is _kt,',v-.,_inlnctric'. altllou_2]l tlie fir._t t_v<_Iliatricr_ arc llt)t, svilllllttric .3 h,. ", :,,;,ltrix i, iiiil_li< d. tit,iicrl:_lrth, v.ht.z_a
\Vith Eq. (k_,_sul_._titutcd ill_+O i_]¢|. 1_'9:. in._pri.titllt Ot thi_ tild,: ai_l_cai._ c_tr ,it, _, ,_,illbt,l r_l_r_.,rlltili_ :i (.lihllllll

t.tlu,ltion _.lllc| [_(l. t b0 i_c'rnlit._ thr nl,ltrix G' to t)C rccordtd qiatrix that cali ]_c partiti_,z_<'d ilihl :7 tw I iliatrict __. ,l

ill tt,rlli_ ()[ ;7 t'l.v ;] partitionrd lllatric.l.,_ ill the vx_,tndt>d :,kr_-,_%ililllt'tlit lll,t('ri'_. " iiill_]i_ (t. _vtiich..,,> <i _.tidfrix _)f
-- ,"'7 " " "fc)rin _hllwn in lz'l<_.6. The ._ul_._l:itution(;'7(." :: i.7,,_ |ili_ ;.) b', :$ p.irtiti_ln_, i, t!i,l_llll,il, xxitl_ thr ;3 })x .7 _k<*w-

,tl_o t_c(n al)|_lit,d hrr<..N,.itr that al! ,_f tiir _) tt'l'!l::_ lill ;*,iiiliil'_ril_ tOill)tl'l[_,irt, _:t tli<' :] t'_ 1 tic'lilt'lit, I,f It:, c,,l-
tilc rift'it _i(h' _,f l'hl_. ,-t) ,ill(l i_li 0,rl, _'.C't'illllill(i(iO.tt<C! tlI]lli Illatrix l'llligld ,llon_ tilt cli.t<_llli<ll.P,tr rx,'.liii_!r. _,ii
ill (;', ]c'_.i_.ill!_oil] _, t|allit'lili_, tcrlli, ill tilt' .,,_iill!lctric tlic ttihliiiti lit(ttri'_
iliittrix /)'.

Tlw ilialrix _('_*'-is skt, vi-._%llllllt.lriv. _ilil.t' thv tl'_lllSi'itl_t- _. II: -_ [/l: (] _l: (] , _l (]]
of t|w matrix in Fi!_. t_;, _< "t._ A colnl_att. ,.-.,-;, n_._atixc, llilirt,

illl(.| liSt,fill rrprcscntalion of this lnatrix ('iin t)t, olltaillt,d
lw t)roadciiinil the di.,_iliilion _t the llprr,lhlr tildr .",..\_
ilhl,-Ir,iicd in [q. 44_.whril ,i tildr ,il'Jl_.t-ar_liver ,l _lilll_ll th, ii!,.h. =,i,, i.lt,,r ,i'.'liiti_.-

_: ti I) II"

0 i) tl _l

l) li .._: li

t! iIIt I'. 0 II (_
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\Vitll tlli._ a&h'd _'_llw'ldhn,, alter iwlsp_,ctiol_of Fig. 6 and 1GlS. (79) and (80L the matrix (;' I_mx lw written in the
('__ll Ip;.L(q [()Fill

(;'- _._t{_,,....,,,,)__(,:_..c,.,__'- ,:,.,,[((:,.,), ff'l .,,.,,._1,)l_]}_._t[/'-:,,,..:r')_-_('-'.,:c,,,_~]

"_'l.' matriv_,s .Y ;u.1 K' al_pear in t'mnlmV_ f()nn as

:V M {[i",...,:':"r _. <':,..C,:,_~l -":,:,,[_"-t (CZ)] "__,.,,M 'l//]}

K'-- ._1{I:,. ::"_~(':,:,,:_-")~-_2('-:,.:,,Co,)~(--',:.._:")~_(",:,,C,,,)~(':,:.(:,,,)~ (9'
,_,.,.11>,,.,...}o(C,,,)a,,_.. _(c,,,)_t,,,,)]_,,,,'._t ?;_}_K



_vll,.rt. lll_' llt'sv .',_lld>_d ,t is _t _._dlllnll wll_Lil'i\ ill Wliiu]: hi Ill_lti_ll. "l'ljr till;il z','>,lllt is I",_I. I_.tl. \villl Ill,lll'i_'_',, _1. jl'.

;tttitzich'-¢.lllltrtd jl,ls (111till' _iI)])l'll(]__l!rl' \%'()l]]d ('(Hlll'il)llll' ;Itlitznd_' I't'lil|i%'l' |l)ils ll;i_,l ' I_'._., _l _,(';lllliill_ dlil_'llll,it.

is l_l'l'sl'ilt Ill _ltt'()lilzill_d;Ih' I,,<_;dd_' l_,il'f ,, s_itjtili Ill,. _,_

In, I'\lxlll_h_l t_zzli, lilt' lll_ltz'i\ /.' dl_ll_',ll,, :is _z _'_dzzllili ]li_'ll' I_ltli_'z' tli,zlz tli_' :zl_l_l'zz_t_z.14r,.Sll_._.i_ili/_lli_lt l_l lli_'
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C. V,,hicl_ Equations I., _d'_,J_ltt;.I.'_t t_ H,. _vitl_ _u_ _m\ili.l,'v t,.,ti, d ..,_.,h']_,

,Ir,lil,t,didli_,llw r_'tl,,ir,t'd',1_t,l'.lilllillU,lil'ic'llt_l|it)ll.
It,.t.1:.li,il.'l_,Jlu,ll',ILilllwl_,ttI,'zilu.llif,,,,II.',Lpl.'i,l-

,I'+'.,li,l,,llil,ililHl',li' Ill'+lilll,'l,,'l,.i',i..'i,'IflU'lllt.tls,,llit.h,,s+ll_.llil_,,it+,,.qllu,lt,tlt,_li,t,_iltrmi.,l_iti_IHlli,._._h,.,i,,i,i

.li,l _h li_, it', ,'tltl.llh,ti. ,,I i,u,l+,+ll ll_ .il+ii+' Ill, l_,n+_+,,,Itltl

t,,,l,t,".._l+l+lh'_l I,_ il },', fill .il,l,ii,l.tLt,' .t', ,'\l,'It+.il `'+' \ltl.+tl_!, II. x,'l,i,'I, ,,t I"i'4 '+ +. ,,t .ill,si.,liiial illt,'l'<'_t
lit _l.+lll,l I.' il_l,,ul x'.llll + I.Illl,llI, HP. _lt Illllllllli +_i1 .I
+l,,i..i,,.,..+,',l,.i..il,+ili;,t+l,l,h'',l.,tl_If,,'li_i_ll,,,d_,li,,l

itlilil'.,_)lit'i_.IIIll_.l.if'.+'_lli_ilh,ll',Illlllt|lli,llI_,I,ixi'IXv,i,h

,],t,'I, ,l il, _,', II,,I, II. II_ ,._l_i_ l, .i,I,+,ji. ill, ,I I,,,,I,, i,,ll+,,l', i,llii41" ,,I ',,li:t,,' ,,,.l,i, h"+ it,, _l_'t+',,lli_,,i +., ,_,_l,,_h.d l,,r,
+,s, i, ,,,i+ti._,,l,,l ',,.i'!_ I,,.+t,,l },,,tlx ,_,,ll,,,l, II, it,,' t',,, lIHi,,'il+,ill> l_,i it,, illti,.,lridixl. '_+llti('. 'l'li_, mutl',,,l t,l,i,,l l,,

t,+,i ,,I l,',},lul .... ,i,llli.ll, + .lli.l]+,,i., IIH.._i,.,,+,,t+i It, ll_i., t+\l)_'tt_'il t_, ;il,l,,,,ul_ tht" th*rix:tti_,ll ,,[ ,++lli',iti,)IP, t,l ,,i_,

,li+, ,_i,,i, i', ,,,i,l,li,,i!,',l I,_ lli,..i,,ll, il,,il,*il tlliiit,lti<lll ill + ti_,ll _,I i'_lili >,ll,i,, ' ,,_']lit'l_ ' C(ilili_ilr+iti,i]i illili,,iilluill,,, il

,,,,,,I,I ,i,,,i,li_i,tl .... f if,,, ,,lq,,,i,,l.t;,,, II till' .+it.tl,,.,l i..+i,- ,,t,tlil_ll,itil)ll,il (,lhcitlli'x i,, It, r,'sllh. '[lit, .il+l+t,liil,t,_t,_
,'_i,l,lti(+lls ,I,'ri,.,+_l il, Nt'ilitlll II!_1+. <,ll Ill,' t,ll_.'l I,+u.t.

',','itlllli I1.' ,_h'li.,liti_ll ,,1t..,',._1..t,,tl ..,I,,,lihl ,,_I r.',ll'ir,

r_,th.rix,ttit._l_,r,,p_.t.ilit._.,i,,_.,,.
i,.i,,...liPtl.'I'I"+._l.t,.+..,l_'_,i,i',,.,Ill,i,,tlillii'lill_,il,,,','Ill,,

(h.. ill,t,, v, rih-it_ _ll_l_li_.+lti<,l, t,, ,it,,, ll.,ti, li._l ..,,,,l,'l]i

11, _ l+,l'.,i_- \_,v,l,.i-I':llh'r ,.<ill,lli...... I" ;,'ll .llitl *1 I'1,

i l',i|i(._ll, illl!,_lllill lil,,lll_'llllilil, ai_t] r, '+,_ill.t,_l l,,l._iti,'..ill
llll,l.ll ll_,ll hill, ,. ,i., i\l, Ill.l] l,,ll i.-, .il+l,l,,,l I,, tl,' liqi_l li'l,'iil'il Ill tli,' x,'liitl,' ,,i+l_ i',,iil,'r
I,_.1_ I tl,,il M_lill, ,iilitil t i_ ii.ltlllll it ;_lii li .i_ il,,. "'_ iillll,lil i
lll,,,I,, +,t Ii, t "k. l,t .i,_iil, + lll.iI _,,,illili,l!, Iiiiill,ililli+ i

Ill ill Iixiill4 tlil' liil,illlili,il l'ilihiiil,li tl,llii
+Ill, ', ilill iilk,,li,l,_i, Ill,* illli I.it i,lill I,ii_ ,' ,+Xl_,,+'.'.l,,l, I lii',

i_,, I1,,,I i_ , xl,h,,,,I III itii llilll Iil I ,,t II,l', ll'lilill 'l" I'1 till, _

I1,, liiiiiil ill.ill I+l,k i., il!, ,h lix .ill:ill ill i_lil.tll_,ll' id

liliilhill lit ,I IXI'I' ,il Xl 111'h Ill.il ,_t+lltll, , tt, _il>ll ,lltlll+lltl +

I_'i _tit .111'ililll Still I" Ill. Jill IIl'll' li' I kl.ilillslt ,i l_l Ill I,II
+l I ,'t , ,lli.lli,lii_ .illlllll .illh I,, _iilii,ill_ ill H,,ll , _l liil h,
llii, llli,,t, i. ilisl,,iil i_.,lii_l_,l I,, .i t.l+i_, _lt _ I,i, h. ill,iI

tll.i _. t,i ll,,,,I,h,I .l_ ,i iil!:il 1.... I_ II _itli I_,, Ih-_ilih-

._1'1" iHI.l_t' _ _ II .ilHI _ • ,i I,,_l,lll,,.,! li?,ilt ',_IIIIIII I,i, (> I:,Ilit-t',"tPIIIPI,. MtIIPIPIA#% t

i,,t,+i li .li,'i .I 'iliEll ill'lit 1,,,,1_ /i .ilt,ull, Ii I,, #i _iil,

,I ',it,ltll Ill itll, i,t ll.ili,l.illi,Ii i1 Ill lihillt 711ApI',IAII, PiAi i /1 I I HtN'+I

# _ ill/j _ III,1[, Pi^'1, >I_ l,
Ill, _,fllill "_,li!lilll_illl! |,ltl,,l_ Illttililllt lilill fill' " I_:'_'11 • Mlt,ll+,i', /#it|llll llllt!>ll I

II "lit, Ii"11, ill I1'" _, Itli h i illt.ltliili, lii !', Ib'li_,ll hi.l,,+ " /_1

il lltl llltl, , ,Ill Illll Ili,tl lll,l!X /i .ill_+l t_,' II,._il,h ,illll, lill lll+ltiP,,,
.ll41._ Ii, .litll Ii I li.,.llll il I,,ll, l+ t_ltlli,_ 11,. xl.lllll,, h, #

;sl_',l_ il_: l,,ll,,_i,i.t ,,l,l.sli,,il.., +il,lil_, ,lli,.tlh. II i,, ,ill

i,h ,ill/, ,I Ill ,I,il! _,li, llil,, ,tt'_i_ll,<l t,, ili.iilil,iili ,lllii , ll_l!lrll,

, ,,ilti,,l ,_ _1_lit !ll fill _il I,,li, , /I 0illil /I lli.iilil,iili_ Ilil + l_._..._._...+;.;.i._:._._.;.+.A_,_i._++,;...;o..,,.;...;.i.++++.,;...,.., i;_

!il'.l,l I,l<tt!,,ltli li III ,Iit i,_ltll lltlllililiit ,illiililll +1It, II, t _I_N_P+_iHIIN_,,l ll_li-+ Ill Alibilf A ?

il,h ,llih iili.i X I_ ._lf,ll h,',l t,, /¢ ,il .I lliitl_l' llt,il 1" iil,il_
liiliill_l ,,,ilii,dhll i;l,,ii_,' li,,itliili '%_lll,_i _,11 ,ili,lx It fil I. Tri-Ipin laltllile Itroll-lel.itoncll viewl
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(Willt cl,,adi,' dilter_,lltiath_n as izl I']_1. 70)

'cl /'T I._ i i'_ , ;j,i:'. e , _). p • f_dm

'd /" o

.N_)tt' Ill;it l"uh'r'n _,_iuatimzs eznt'rgt' here t_)l"the special with I_ c(mstant and _ the,-single tr;uis]ation variahh,, the
c;ist, (_t";t rigid vt,hich,, sizzct, tl.'i_ _mlv tl_e first twu terms integral becomes
_u_ Ilia' right art, n_n::t,r_. Al._ther spt'ciai ease of intt,rt'.',t

is tllat _d tl.' n_uninallv statiollarv 1)ast, B'. for wliich co 'd [ 'el •
is intinit,'simai ,.Jd E,I. (105)lin,'ariz,,s t,, dr I, p • _tlm --_-(ml_b:) =: mb_'b: t mb_ ". b.

] °°T I"_ + p - p dm (111(3)
Finally. tht. cm_tributions of the alq_t'.da_c_'s to this

Tlu, ch;dh'li_c t_l l"_ls. (10,_) _md /108) is the rt.piact,- integral must ht, st)ught, llt,turn for this l,_urpost , to tht,
nit,_fl ot tht, inte_ral.s hv m_re convenient fm..,tions. Rela- c'onc't'pt of the discrete l)ara,nt,ter model _)f tl., aply.'nd-
tire d_,rixatix _,s D and _ will exist only for mass element:; age. and the d_'finiti_ms of II. r'. und u' in I_g. (:I{i) _.,_1
that ,nm'_' relative to rigid l_lx" B,. so the Sel)ar_flt' con- Fig. 4. I,_ additi_n, let p_ represent ;, _._,,.,ric lu_siti_m
trilufli_._.., _t the r_tor B . tht, dam.l_er B_. _uzd the th'xibh' vt,c.tor fr_.n the mass centt,r l'. of st,l,.-h_dv ..I. t_ a t,,pi-

t,al diti'erential mass element i_: A.. "l'l., al_lmquiate i,fl,'-
al)p_'lld;z,_es ._,' a'ld .I.-c_m lu' <.a!cul;zted in turn.

gral the. l_t.c.mnes, for a typical al)l_t'nda_t' .,I (here eitl.'r

l"m" tlw r_)t_r, tl., r_,h,._mt intt,gral is simply ..1' or .1:t.

/i f,It p. f,,h,, Fit p. _.p),/,,, i_(JL'a_ i' p' f''/'' (n_"'' 'C' p') (_,: o,,, ),/,,,
• , _ • o! I

(l(}T_ (1_)1

tilt, h_z,lthl d_,.lic _1 tl., t_t,,,'. ;rod h is tl., _m_ul_,_"n.,- tor, n_,l_ in i,;_i, (:1,_) is rv_luirud I_)r tin. ilflerpretati_., _ff
in_'iit,.ii _t tl_' rt_h,r I_ r,'l.tiv_' h, tl.' b.._'_'li,. I'_I, (!(_1t. ;uld this e;m lu, elm.. t'_ll__,l_i_'iltl)' l_v writing I

t].' individll_l] d_,f_)rnl;_ti_mv_'cturs itl h,rnls _)t'al_lmquiah , I
I"_w tl.' tral_nJ,fliil_.;I.,d_ I_. tilt' ilih'Krali_)ll is tllvia], v_'ch)r arnLvs (_is in Eqs. ,"t7and T2). lh,callinb¢ that .C/."is

_h.,,, all p,.I,, ,_t I:t h;_, lll_. _anie v_,hwit,v i'_i,, ;_,. Thu.., the ang_,lar vM_wilv _fl {_1 r,,lativ_, l_ {I)1 tin' a _iwtl
if m i_ tl,_' _li;,s_ _1 I_. a_.! its p,)_iti_ul v_'l_ttlv_,h) {) in apl_vmlage .I. ;u.! {tl} _/P in tl.' a|lb_ul_u' veh_cilv _1 ,.I. _-
ff,i_,'n il, tl.' II, [ix_'_!_,', I,u t_;p.i.,b,. h , b . l_x'!_1) _ ._b,, rMativ_, t_ ..I. _..' call ,._rih, !'_!. {l(),t)) as

/p ildm iII _ r" _ u'. p't. I.CZ".(r' u') . {_l}_ ' -la _' i 1_1'/}')• p'ldm,

, ° .

SlIi_'I' ill ('_.1'1_ |t'lill till' hll_',Kl;d I_'_,'l' .I Cilll I_' I,'l_li.,'_l 1,', tl." s_,Zn ,_t . ilfl_'gl',dn _'_t'r tl.' il_li_i_h_! s,ll_.l.,di,.'.,

___I._
.._._%,:..... :,: ./:,".!.._..,i,_/; . _-.. __'_ _ '



(l_enwmber that u' and {a}'rfl _ are infinitesimal.) As for the rotor equation (107), tilt' last term in Eq. (110) can be.
_i'itten in terms of the inertia d.vadics I" of the sub-bodies. Every other integral in Eq. (110) permits faetorization of

._, din. :
11|.,

Thus that.equation he,comes (with _ deuoting the sum over x ranging from 1 to u)

,f,_p "-__dm : R _ {a}r-vm., fi_ @ _r.'-_-'; {al'r m,h _

_ R " [12" ,: _m,(r' t u")]-t x-.:m,r"s'i [_" "-. (r"-t u')] ; _m,u '_. (1"l""k r.')_ "l'_'{alr/} ' (lll

Equation (105) requires lhe inertial derivative of Eq. (111), which is

'd f_d--t. p ", _dm = _ ", [R ",. {a}+X_m,h _1 -; R _'. [{a}r"m._i_ " ! (to I £1"5', {al'r_m, it']
-F ((0-t-_") _. Xr" "._{al'rni._' -t X.:r"', [{al_'m,i_ ' -_ ((o .__")"_, {alrm_h ']

-_ (_ × R)".':[_." ".:".:m,(r' + ug]-_ R "-[(_" _ _ . m") • _m. (r' ! u')]

R ", [_" ",,zm.. {a)_'O'1 _,R X {a" "<-'-'m.,[(_ _ a"l. (r' , u')]}
o

S _m., [(o ",. £I4) ". r"] _.. [1_" \ (r" -t. u')] .; -x'm<r" . [(l'l" : o ". _l',) ". (r" +.u")]

+ -','m.,'*". {rl',. l(o t n")"-: (r' t u')]}

4 _m, {a}rfi' • (rz" "-r')4 -"m_[(_ ! rl")"- u'] " (1"l", r_)

-"m,u' :,. [(_" _'.. II")', r']-t "..:m,u_ . {_'l"". [(_ ". II") • r']/

-.l'.[{a}"/_" _(_o t n")'- {a}_!',''] , (_ _ _'l,,). l"{al'!i" I". (_o; l'l").{a}"f)" (!1:_
¢r

']'hi.', iillWil,hlv t, xprl,_.sillli, I'l,lll,;ih,d tllr i,ii{.]i all|}i,lid:il,[t, illl;il,hl,l| hi lu_lv it,, Ilili_l llqCl.llii'r _vilh i'](!.,,.' (1117)iilll|

( I(lkl lie .',ulisliliili'd illhl lhl' I'lllatiliii;il t'{|illiliilli ill' IlllitiOli tl']li. !l),5) ili llil' t4i'ii('l'iil t'ii_l' lit arllih'ar)' llli_l' ililllillll, i"ilr-

liil'rln_ul', 11,' ciliilriluilioli lif iippi'iidagl' tll'[lll'llillliiili hi I ili I']q. (IllS/v¢lluld liavl, Ill Ill, clilcullih,d. Ill iliil_,l i,iigilil,i,r..
ilig alllllicalilllis, _.lli._di,gl'l,{, of Ci)lliph,',;il)' is llliWai'ralih'd, lit lit{, ttiri,gilili_, lliil)' iii}llt,iiillig( , ih,tilriiialilliis have lil,l,ii
rl,slrich,d alid lhl,,_l, }i;Ivl, llcl,ii il_lillil'il hi rl'illliill hl[hiih'._iiiial. In tiicl, lhl,)' iiri, al lu,.si .siiiiill in iili i,llgilii,l,rhig ._l,ll_l,
lliily, iilill di,ttlriiliiliilii vi,liicilh,s iilid ilct,i,h,rillilliis i_r{duillly i'X('i'l'i_|, ili iliil_l ,_pm't' _'ellich',',, lilli,_l' ihi{, hi prl,sclilu,d
rl,i,ilivl, iiii)liilliS (._iicli it.,, 1'l" iiiid 1'_"1.it is lhus lilli_il ri,a_i.qili}lll, ili lilt i,ligilil,l,rillg tlpplicatiini hi lilil,ari/e ili llil',,e
liilh'r viirhlllh,._ ill.sil, iillhinigli ii .shoiihl ill, liiiih,r.shlild lhlit lilt., rl,_iilliiil,4 i'(lualililiS liick lhl, rigilr i}llil clili ill. ¢.l;iiliil,iIo

(liiiwi,vi,r altiliciallv) flu' i'llU;lli{lii_ ,_ii{'}iil_,EI1. (105), lini'iu'ized hi ill,tornillliini_, (lilly. Wiili !hii.ari/ilti{lii ili il: iiin| l'l",
EIi. (i I_1 lll't'iillli'_

dt. !)" I_t'lni i,I. Ill .. {lilTZlll,i'i'] I II , [{il}'_lll, ii', i,.i, {li}'_,,l,l'l']
' I,I' ();r' ' {il}lili, i'l') I _r'[{lllllli, i; ' ' Id ' {ii}lill, i'l ']

+ (I,,l ' R). {,ll". _in, r')# I1',. (1_1'' +i,,l .,. _r ' ) ' ',..,m,r' + R . [_", (t,l. r')]

' _,l,r' . [([1", I. il+') • r'] ! _,111,1" • [_[l"' (¢i1' r')]

, -,i-<.llal']/' +_.. {a}'/i'l +u_. r.l.i'k' I'..,.{,,)'[t' ilia,

'l'hi,i rl'suh, whl,n ,,ull,,liluh,d hihl /]l 1. (IO,'_),_l_l_lll Ill. iillplillliiait, t(ir lli_. ,dlnii],llillii lit ihl, _l,liich, lit l,'ig. !t ili tilt.
Ulilikl<,l) Ilillih' (it IIilllitlll ill _l)ich thr iiptil'liliiil,41'_ iirl, IiIlill'l_.l_iill_ _Uildllli] iiiiiligl, lit (liieilllitilni x_,iil, il',qu'_l Ill I1,.
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wlfil,' tilt' im,rtial a_gl:lar velocity m of lit is large..Mort, useful flu'ms of this result appear either when D.'_ is idea-
tit'all" zero, which leaves

_'L/_[ . r
dt.lp _ i'_dm _" [R" {a}"m_h _] R× [{a} _m.i;' • to'-. {a}r,m,_h ,']

. _ ". k_r' "- {a}'rm_h'_-_ x-.:r"",. [{al'rm, i3" ' to ". {a}_m_t_ '_]

+_l,.[{a}'rh,-F_'.({a}_'h.' ] _ _\l._.{a}rh._-I.,\._.{tt}rh, (114)

or when ¢o is also assumed to bc smalLand_incl_dcdin tiw lim,ari::-dion, with the result

'd f,Ji ,P " f_dm R'. laI"-"m,_i" ! "r _ " la/_m_i ' + R ": (_" "- "..:m,r'/! _m.r _x: (_Z"\ r")=+ "l".{a}_ _''_
(115)

Tht,.st, t_vo special cases may he of value in practical al_plicati(ms, since they accommodate tilt' tri-spin vchich' with
iicxildc apl_cmlagcs on thc de-siren hotly, and also the dual-spin vchich' with al_lwndagcs ml tile spinning body. Evcn
fm'thcr .,,pccialization may bc warranted, silK,e spitming vcb.iclcs with.tlcxil_le apl_cmlagcs arc usuall.v siml_h' "spinlit'rs,"
rathcr than dual-spin vchich,s, and a dc-slmU lmdv with th,xibh, appcp:l;:ges is anorc apt to bc part of a dual-spin vchich'
titan _f a tri-spin vt,hich', in which case the rclatixc motiml l'Z"is usually zero.

The csscntial ditt'crcnccs among the CXl_andcd forms of tilt, rotational cquati:m (105) a_;csimply diffcrencvs in the
size of the C_luations aml thc atmmnt of htlokkccping im'oh'ed in writing thcm in matrix form. I_t,causc the purpose
hcrc is simply to illustrate the structure of the vehicle equations, attcntitm is rcstrictcd Iwnceforth to a dual-spiu vehicle
willl a rigid, symmetric rotor, a m_tation damper, and a sil>gh, th,xibh, alqwmlage witlmut rotational capalhlit.v relative
to its base (II" 0 :rod C !': so {a} {h} ]. The phdfi_rm angular velocity ta is unrestricted, so tilt' cqt|atitms t_ follow
may casily bc .spccializcd either to the siml_lc spiuncr with ticxiblc apl_endagcs (by tnnitting the rotor) t)r tt_ thc (hwi-
spiu vehicle with an appc_ld;tgc ou a tit'-spun ht_dy (l,y lincarizing in tal. By taking imth t_f thcsc steps tmuitting the
lottlr illtd lilm;ni,,in,K ill td). tlllt' _btain', equations (d iiitltioli o|' a spact, vchich, with tl_r,.,c.axis active rcat'tim_-jt't conh'_._!
i_ ;t_ iln,_tiall.v slatimmr.v ntuninal oric_datim_.

Ih insl'_cctitm td: l';tl,',. ( i(15/, (1(171, (IllS), and (! I.l), flu' re_luircd vcctt_r-dyadic C_lnatimt is t_l_t;_il_t'tl;t,, f,_!low,,,:

T i._b . ,_, 1.¢o , _.,,_ _ !', + ml,(_'l,:+ho" I,.,)' _,.-11_'. {hl:,.:,',.¢r]

R' l{l,}'_m,i;"+ _" {hl"_m,h'] ! t_. [-"r'-{l)}'m,fi']+ _r' • [[l)}'m,i;'--!to. {bl'm,_'l

+ >"'l{h}'/_" _ to'. {b}'[_'].+ _- _i_'{bl'h ' _r- to..{h}'/_" (116)

Nt_h' tirol flu' litltss-cclflcr nn_titm v |m,_ bccu assm,,cd t. I,ct the gcm,ric symlud i)'" bc tl_.t' vilhlc ,_t p when tl_c
be ildilfitcsimal, in act,_udata,t, with tlu' indicatctl special- vchich' is Ul_tlt,tt_rlnctl. st_ lhat the im'rtia dyadic _| the
i/atitul, uluh'f_u'Int'd vchicle is

'l'_'t_s i1,,_,_l_i**_,I in l';q. _116} arc tiuu,-varialdt,, sincc I [(1,,p'lt p':p'ldm (IIS)
tin' iln,ltia dyadic tfl tlu, t'tmllm'_ih' vchich' dcl'n'nlls _11
if,, dchu,_mli_up,, Ib, dt'linitltm (_ce l';q. I0:II, flu' ',,chich .........l'_u".II 1.,int_ _I tl.' vchit'h' except th-,.' in the lh,,.,ildc

il,clti,_ dyadic ttu' in_int () i_ _i_,',l lw api;,,,ml,tgc aud tin, mflatmn thunpvr lua,_,_,p is ith._dically
p". l.'tu" pt_ild,', ill tin' tnmslating tl,llllll_'r h_dv i;,,

I t (p'pi pp!dm (1171 p p'._ _h, : !_b, _ _b, (ll,ql
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Svmb_ls T. It, and 1 are new, being detlned b.tu'e by their context. Tilt' identities

i,_\ _,,.{b}_'/_.'_ v._ \, lbl'/_.... ,.,,.._r._.,

alld

}',- }'_• _',h--{b},/, . {h},_J,

Imve been employed in writing Eq. (1"8).

Tht, matrix equation isolnorphic to tilt' vector equatitm (125) can be written, by inspection, simply b.v dropping the
vector arrays (or by pre-dot-multipl.ving by {b}:°). This matrix e_luation is more usefid whell _+itten in terms of the
total 6n by 1 deformation matrix q (defined in Eq. 83), making tlse of the operators _r,. and _._: (see Eq. $5). The result
then adopts the [ornl .__

T 1: " + _1 :_,,, * J_ • _h _ " "_" Al (_:,, R _- r) r q_:,, " _i,, 31 i'¢,:,, R -_ r) q' "-',.,,"t,} _ .,q. ,_ ¢o (.1

- _:., ._t,!('-:,...i_ - r)' '",.,,',,,_ -"_..<TM- :_tq_"-',,,:,:,-- mb._.CE'_:_ �E_E''''. , ,,,• rot,(_'t:• ._ E_

--mb (_?, _ _)(E'E ''r 4: E_E'r),,, 4 mR x', ./14-; _ x.r .11;i ___x-," M,"i . ~x.r.._,"r,thI". x,, 7.11_i

,,. _,/..,: _._b',, ¢,1 m, ._ "F,I "-,,, • _"__',,, ' ¢'_

-- _x.,' 31{Z:._,R _ r'_q;"_: ..... _x_i.,, 31q(x_:,.R _ r)rx_: .... -;- '_ _,. M (_.,,R " ")",i_,',,._., , .. , , ___ _,_

- .,,,,"[_,_,:,,R _ ,');t_- 4' i'_,'..R + r)_]".:,:;,., __._9_.

The dcrivatitm of this equation h;u_ been the principal The more general Eq. (1291 h;_s the majt_r added term
objectixt, in this section. Interl_retation may be facilitated T,,l'_,,,, which introdut'es tilt' "l':uh'r coupling" or "gyro-
Iw rest|'icting attention to the spccial t'ase of a dual-spin scopic coupling" of tht' vehiclc as a spimdng rigid body.
vehich, with an appcudage on a nonlin;lllv de-spun plat- In addition, Eq. (12,9! inch|des a nu|ltitude of nonlincar
form. This case is significant from au applications view- terms that reth,ct tilt, inllueuce of tlR' vt'hicle dchum-
point, ;tt_tt vet the assumption tlmt ,., is infl||itcsimal ability. They cau lw c,|tt'gorized a'_ vari.us kinds ot act'el-
rendc|'s E_1. (1:29_ quite il_terpretal_h'. Siuce ,0 is small, eration terms (t'entript'tal, eoriolis, etc.), but pcrhal_S they
it can Iw replaced Iw tilt' matrix _ where _}- [_i_f_:_,]r, are best uude|'stood hv rcvivwiug their origins _._l tilt,
The |e.,_ult is simply tilt, lillear equation vector-dyadic cquatitm ffl_l(iL

The matrix equation of general rotatioll o[ tilt' vehicle,
T l" ;; ; i, I'_i , ml,_'E ". Iqx-_?,31it l':t1. (129), is ¢o|npatil,h, in its assunq,tit,ns with Eq. (,t_3),

"" ?.ll;i _ "", _h'i (130) which defilleS tilt' iq_l_t,ndagt, rt'SpOltSt,to ;t givell arbitr_ry
-r,, -,, I)ast' tnotion. Tilt'st' t'tllmtiolls tit, n_n xt't ctnlstitl|tt' it ta_!n-

ph'te set, howevt'|', si_t._' th:'y includr (in addititul t.

St|we !' is tht, inertia matrix .t tlR. total ,',,hich, as a rigid ut|slWcitit,d extcn!_d t.rces and torqt.'st thc ..kn._ n
body. tilt' rquatitu| 1' i /;_ould sutticc if the rotor were motiml variabh,s X, e,, and h.
tixed Lnmnotatiug_ and tilt, apl,t,ndag_, wt.r,' rigid, The
tt|iqlu, applicd to the body !1_ in at't't'leri|ting tilt' relative The 3 lp, i nllttri\ ._ i_ _ht, II_.|trix ill all invlti,d x_,_,t_r
_lngllldr ratt, of thc l't_toris Ii, ;uld tht. "gyrt_sc_pic still- basis of (l_t, iucrtial at ct'h,|_.titul _t,t'tor ot tllt' _t,|littt,
ur,,s'" supplicd by thr rohu' is i_i h'_. "l'hr term mbi:l? ,_ass ct,ldt,r. 'l'hi_ vt'ctor is easily Irlatc_l tt_ the |'c.s,h,ult

I_'th't't,, tilt' "illerti,tl tt,lqllt"" thlc t_ tlalnpt r IIhISS at't't'lt'l r- ,q_plit't! ftn't' ' !' |_ apl_lyitL_: Nt'_tt_¢._; :,t.colR! lax,,, i.c..
ati_u_, atld thr la.,,t thrt,t, tclm,_ rcflcct tht' t'_t,_,.ts t;[ ap-
llt'lnl,tgt ' tlt't'O_lll,ttit,ll. F :- Q}f'._ ')I,_{i}'r.;_
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_l_,'o, % tClH, sHlt_ th, _..d._,i_ l,l.os in_,, (1_. h_ _,, I: ;:;i, ' () _ (; I;!,
ttil_,g,l! t,.,,_ (,o, II. al_i.l.lag:. Ihl, (;' (hl,,l.h till

('.', . )i,..' , _: i,_t,i i, ,,,_,:l: .

Ij.h':l ill Ill,' _h._lo!.,_l,_ll,d I;, t. (_ll,. 31". IA'. ,ll.1 A' ar,'

',%lltlll,'l| i( a,il, t t;' ,IOl,I _' al, sk,'_%.,_l,lllt.a'tlll 'llll_ I,_llil ,d ;I. kalli, I, I,_t,dl,_t_,Jll,ltl,lli_Plo ,,AI_I.' _aJtl

11.' ,,'nll.t,_,il_g _t_n,,eu,_,,_1i.i._ao_ iid,,it,d. I,'._i. (12',t_, a'_ I]. ,,.lli_o,,t_t nl,O,i_ ,,I ' ,d.,,.,_iv,R tJ_,_ttha...,,tin,

_i_o_',l..t.,,_l i.dv tl,tl ,..'.,d,tt t'll_nitli_m.,, .illli,.igl, _lani,_ ,,I IIhlllt'. I.'lmit', ,.;I... l_ ,Ut,,,,.l..l.t,' .11 '.',,'U.I d, gl,,.
il_ II'I'IIP, llt%O]_',' lll,illO_ illll'iilltli'_; ll,.tt ,, _,.',oq,liq, _o,n,i t,'t,,_ h, ,,. _io,_lIt,, Ii ,h lJiniilg f; t_ ali_h.l, all f, _,,_ o,_lJ"'
lill_li,;rh ,|_r|,| tilt _''h'lil''ill'_. 'l h'' ltllli,'dl,liH _' qi| ill' %,tri,llllt. t,,, Iii_ Hill IIIot',li_ Ilt ... lit'! idn,..al.'l! It', i Ill if' .tt,|ltl II IIl¢lit*

¢t ililli iI'_ ,h/i_ illi_ _'s ill I':fl, {I _.,ql is ,l_i|til lill"dl, alO(i d_dill ilP, l Rhl illh, th,, slglliiil ,tll, a all I ,l_.l t; Illil_. )P ji.(i[illt iI I,,,

.... IlllIt'dl'_. 'litlS r ill Ill,' lil',l [_,n_i,r .till ,., ill till' '_,*,,llltJ, '.O itlsJ. ¢{IIIK l_,1 t l I_lJ _t,lll, Ii l'_ Ih,, _,', t,,, iI_a,l, ,111|l'¢ !

il _,_,il,l I. l.,_ild,' ,_ _ttt,. tl._ ('¢llllilj, lll iPl |l:,' It. Ill dl'Id 'd Ii, I (l.'!i, %%1tli llol_ ¢ _,!Vllll,,i{l,,,, l,ilm, tli¢ It,It

_1 I".,i (_1_ 'lhis _'_l,lohlI.' I|li_J('itllill_. hiiv,., _ll !, _,illtl fill' ltlitil,ll Ill,it _' j_ Iho. li_,n¢'_aiiaid,, l¢. lfi,I Illillli_ Ill |l.'

(i"lli_J, ill Ilbitli_('_, '._¢,lil(! I, II'ql,lltgillal (:l l_ (i'l:, itPi, I !,lfal _,l,l,I, i,, It,l.,{.. {hi t,'l,'ll, I! l,) Ili_' _,.h.l,,, ,,,,l_
tb,. I¢,]1. ,ff lrl I (12(.1_ a_ Ill, _,'hi( I," ll.!,dli)l.itl I'lllliltjlHl II'litl'l. '1 ]1, l¢ fiPl {;,, a¢(,,illll_,,I,II, , 11.' "it,, It_ll h_l,l,,, '_'

'li_¢lllJi.I Illl. III_,M Illt'l_. 'l,_ I'Ollllh,lsi.((, till' I'/il;:l:pl_l j)h},_i(,,tl ;ll)ldl,,,I l,i ll.' _,¢'IIilh IIoII' t,P tile' _¢¢li,di'. ,tall !, t,tli,'t,_ ,d

'iiJ,llih(i!illt( (' (1| llli,_ I llll.(li_,,. ;I Is II'V./'Ilt('II Ill ,_l;li)illl(' ,tiq), ll,ht_,,, itll(I ,I.llq.'t ._,l i| lu,t's Ill,-'_AIII" Id_>',nill ,_li
(,_I1,, a,_ gill. iL_ |hi. lllit|ll_ {,' {1t IS1 {I !()' ]t .h,,,d_l 1.' n',|, ,,I th,,t
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*,,i tll.t ,_,,,i_ ,.i ,'i_,*l_lh. _i..i ,b'" ii:i ,,i_,li_i,_,t.r _il II, ..%Itl,lJ._li tlli. _lJhltiilil hi I':, i. (I.I_,) It,i,, r,,,.lil_, l_¢'i,ll
TI.' {'\i',It',l{'¢' ,it iI .,i)hlllll. ;l', ill I':l !. (I.IT) tl_illlx_.,_lrl.. tliilll{l, illl{I {.t'|hlhl ill tht. lll,_llt.:iit ,,, ill tl.' ,,.|l|:til,li ll_:_,_'
lhl i,_iql.iiH, ill ill li,ll_t liilt' _,i_i,ll%;lllil, II_' I} ;till.! it_ {'llr- lit'i'll :.tt{'(I, Ihl",t' .',h'p', II,l_l' illlt %'l't ii_'l'l|lllllli',hl',,I tl.'
ll'%l)liliiliiI,L' _ I'i_l'il%l*{'l(li*, lit{till ll|lj_'rli'_l'. %%'lli{'hi.',till' di',Ll._i'r.', ill _l li;li|',_l{liiillltiilli

illliti'i% Iliil| ilili'lliil}ll'_, l}ll' {'lllll*lHl_lh", ill I':lI (I t:i), It i%
ill '_l'illiir h'illi%, I,:(1. (I.t!)) Il,l'i,,'_t,iit,_ .i _{'t i:J I_ll ll.{tlllll iii illli%| {,iLls,% It(it ¢"_'_,'iililil Ill,it II., ll,%tlll lit' oi %t,lllllll

_l'll,'llll'_ ,il_,l'lll';ii(' l'llll_tl{|lil_ hi till' 1211 I I iillkiill_Vil% IIl'(IL'l' {litl|'r_'|lliill l'llll,llillll; it ill,l_ ,.i|liil' til lllll,litl it t{i,,t

,I,'," ' , oI',' ,, ,lilll ,_.... _cllitihi,ll (i_tllill,iil! '_llhitillit_ till ilr{h,l ,,ltlilllilllt .,_lli'll ;l'_ I':{ I, (1t3), tllli ,_illl ,i ¢ii._,lli,il

,I,' t,\i,_l ,lill_, _lll,ii ,%,,, t,ll_l_,_ till il'it;t{tl ilhii,l,,ll,ii%li{ %'i|l- l'lll'lli_'{rlll Ill,it|l\, _|{ll(lll}._l it i', I.)',,,lilh' I,, _l'ill'i,lll' ,1

it,'", Ill ¢'iL_,l'ir_ilhll"_ ',lll'll IIllil lilt' {tl'll'iilliiliilil. lit {'l.'tl; li,ill%hli!ll,ilil)il litliil I'[I I tl I:{)ill ilil llll{'llllltll'l.I _i',ll'lll ill

I'il'iil_, I'_ /¢'1{I. I'% (:i_illll'i"_ illll'. It' ':tlil'l _¢)il{',. %,lhl¢", '_l{'ltll_! liidi'r t'¢tlIJIillit,., %%111,ii%1' ,iilll li_' ;iil' %%ilillil'Ilii

ill ,_,, Illll%l ill' "_ih'¢t.'{I Ill,it ',iiIl'_l% ;lllil {;' iN %kl'_'_%lliilll'|lil'_ i| i% pl:,,.,itll,. I,, III,IL',lll,tli/l< II.l'
_lilll I'llll;lliliil ( i l,%l _'_,":l Ilillll' _,'lll'l,lll_,, 'I'll," I,Ilh'l tL,ill.'_........

Ill ,\,, I; t I) (l:)_)} tllllll;Itillll i'_ l'l:ll',iill'i¢'ll {il'd,

*l'hl'l,' ,It.' 12. _llhitil|it., .\ .... _,, ,. till i':_i, (l_l{)), ',l,_

Ill,i% Ill' I'llillil It°I'll lit l'%lLliillililJ , till, lli'll'illlillliii| iliill Ill, il ,1,i_ ill'ihl,'il ,l_ till 1211 tl_ l'lll ill,l|° i_i %%hliki' i iihililii%

lltill, iiliiiii.il ,irl. llil, i,i!41-1i'_l,i illl_ ,I,', ,,I,' " ill till, iii,ilri_, t'1, Ilil,il

it .... i, ,, It .... ill ..... il ,ll , It,,lt , Ii. Ill ili,_lll.lll,lil ill !,;_t lit'i),ill,, ill,l%. _ilh' i

I(,t _<) (.t ,t ! i,,t .t, . _ ii It,_, It [,I,'.1, ,i,' "l ] !!.1,' li,i, ' i
(I.iI

I,_,,i,' ._,..I, "l
'1 hi, lilillll% li illlll Iltl, Ii,tiih,iI t litlli il,ill_l il , , Ii .... ill

il',il liilllilii,i._ I,_r i llii;ili_,ii_ Ili,il '_h,iii tiliili ti., ll%'lhiliiil'

,llli,,lil4 ,_.... t,, ll, llil il, ,,,,l,lll,'_ !,,l:l.i.t,,i, I,,,l_, l,i,' ,I,' '1

lil'il' Ih-il_ll_ _ I,lililll, _< t lilitii_,llt ) li

(lliil ',lltqllhii_ li, i,li I! IIl'diiil I I ll41,1i.,,ihil ,it lll_ rt ,_ It

i %i_1_,,lii i i_l ilil i llll ,1,' Iil,II i,ili Ill Ill'll °ill°ill II lit %%ilhlii ,I, I I:l |,

_i iiitillilllh,ili_il-ll,liq,llil tl_ '_tlltiili4 I;, I Itl!it .% llliil li

t_lll,,l_ iilillliil '_,lliilii,il i_ illll I_,,,_ll,l,, _lill! I1. _,

ll.lii ill lllil,itltti,<, ill I, 1 ii l'lt Ilillllill ,, lilih !+.ill I

illtlllll'iiiliill _lll41lil,iil I,IttollliJl_ lii llil I_lit ltlil_ll, i_il_ li t,o11,,_ Ill,°l, I# ,I.' i_i_',_ liilililillilltll,tll,,ll liill_illi_

,1, ,1," _l_itll Ii _lii'iitlill ll_ I;: 1 {l:i(i, lllillill Ihl II,, ,li,ll',,iiil ill,°Ill,

Ill_, ii_oihli _ ,tio Iliqiii! III. !i t,.ilt, i hii_ ,ii, ill,it I l, i.h'lll

(_li,l I1,1 ii ill I I_1 I1, lilil Itli'., iliili ilil illl_,llill ,t. ii
i,l:<llli!,thll _, till iiill,,,liillillliil_ i ll_li,li%l,lllti% IIIHI/ °lit7 |il ,|, _ II,I, (I. il

Ililh ii, iitl! ill (I }l, .

lilt _,lli!lil_ ,,I Ii, I itllli |ill < iI II,,ltillil,ll _ ,l,t 4
gii,ilollill, _ ,i_ _,11 Ill, _,ililtil_ ,,t I1,_ IlP, llilll ill 'I' I_ ,i_liitil il ih, till° ill°ill,lilt !,! '1'

I_ liOill/llit II il Itll Il_illllillllo,'l , " ,_1' till Ili_li'

Itl .t i i,I, !t ll'l.', i. ll,h,ill I_ ll,i_ tlllil ll_,l_'ll ill,l° il._ liillillolioltlill I_

glhlioliillo._l _iilii ,_ ,_ . ,il_' Ill_liitll li,i I1." II_

_,ili, I' iltl _ 'lliilill _l i i,li#lt_,il, lot /°'lot I_ #lit_ ,iiill Illl l_ili it,illiil _i ,,ll ill t_| I.! 1 I I I I_, it. lilili'|_i °,oil ii_ I iol Ilii ' il_i li

Ilil_oih'lll il I'l'.'lliill I_ Ili_ Ill°oil°ill oil ;lililiil_,il,_ Ill_,lli_l i_tlllli_ I,tll I. ,i_liilllllli, _i, illlllill Ilii_ll_lil!liooli tllli'li

J,; ,_ I!tl _'lt_i fill i |lll'_, i tllll _llltll_lllil _ lii_ ' ililllh , _i' (,' ,ittll _' .ill' t,ill_ll°tlll ililll _' lilii_ I_)' ,Ill' #itll. "! Ill'

|l,ill_ fit ligllll,iilii'> ,ill' lilllli I'l I _l.'l-_+ ,tl'o, ,_li_i'll' ii"l,',"_,ilt _li|Jl!''i!!tli,_ ,'llliiil_,,ii, _ I_ I"i_ili _liilil,l,tilllll iii

I lililiig,il.'" li.ill '_ I1,, t,,lll,_ liilL ll,li.igi,lt!li_

41 ]ill IIfI.HNIC411 111110111lll-llltlt

t _ .... _ ....... ' +'llllli"..... t, _ ....... _ .... ,llili,ll,lill_ ',,_,_ t i + '_







Ir

','il_:,Iti_,zl _zt tlt'LIZli'llt'X ,.... i.", Zlzl,l|iiit'tl I:X' the' _._mq_h,_ i_llt;iti_J:t,_mlx thL, ii:,,t .%'_'_||l;Ztit::l', Ill'I'd Ill' _'L_I:,,i_I_':'L'_I,
li,,ttiz't, ut ,I''' ',1,"' ! I' I'"'..'%s il]l:stz';_tt'll izi :'t'_il h'rm.,, i:l _,iz:t'_'tht. z',lll,zli,ql', _llt' +z:l_*_mlllt'_l,roll t!,_',,,'v_::,,tlnl't i:t _'
I'll!. t lilt), t]ii.,, i,, rl,tl,.vti.ll _l+st_l, llill'l':'t_zitml_lh' .',lmll(,,, _'izri_illh'.si,, +_',lil,il,],' ._ t]_' t._ml|ll_,,, t'_mju,_,,l_'.,,ut' till.
tt,,rrl.,.l_ll_lizl K ti_ I_ll xil:rlitiims _lt trl.lllz,.':il _' _.... _ith ii lit,,I +,l,t.
,_1<)_h,_ i_ll_lst. I,_+,,,.I"lHl]i_'rnl_r+', tlw.,,i, I:zudl, ',lml_", +h.-

ll,.ll_l _,:l tl., iiliil.iI ,.tll|liititll|.,,. 'l'll_. t'ul:r, lilmt_',, il: )' ,ll_' 'l'liv. I_lt,llliql,,I _'_lli,_tit)l| ill till' _,,llivh'.+il"._I. !(_,1ttii,'n
,,till _._lih._lllltv,t,ii l',_.lilli:mtl.,, i:i tlzi_ rt,llllrt, th,,,l>itl, tll,.,,t, ll_,l _,lil,.,,
ih,_i i,ltillit_, tilllii ilil, _l,_,,',iv iiill'lllrt'ilitillil.

'11., u.,u,_l _!,,_+i,,_,_,,,t tl_,. ,,Ir_,_,t_:r_l_l_lmi_i_,i,,t i_ t,, Ill', _"' , i7',' _ ',' i'_.Xll,]',l_ l_ ml,7'l: l'
I'l't,iili ill Iliilil,ill_iti llil' Il'_llllll_l"+ iil Ihl' hi'+ll",,I l:_iliilili " " "-' -_

llt'lilil'lil'it"+,, iilill ,ll",l> iilit litill'l'_ ,it xxiiil'!l I'tlll'l'tl'll ihi,t i l(i!tl

ili_ tll,lliil,lii,il.,, Jill..,_.lil,+l. Ill li,iiiil,il IIl,llill.li_..il,+, t_it.li

_..l_li,,l,ltlll,lil iI,liil41.1 lit ll.,,,llll,ilit,i,). Till, ili.,lilil.lilillii till. "l'lil. lillilri'_ ,i, i_ Ii'lliilil,_liliil, iiiill illi, ,,_+iiil,lll ,b: iii

t,lilil.l,liliotliiix4 ,lli ht_l,i llt,l|tll,iii,) ll'_,llllli,+l,,+ i._, ritll,ii i,]i t, (11t_I l+llolirl,_l,itl_ +i h,li iliX+l.i.,i, ill _. 'l'lii_ i,, ,ix,lilill_h.

I_,l,,I,ll lili llil* t,il.! tlilit _itlilill_ il _i%i,Ii illlllillllll lit i,ili,l_i (Ill,t. _ltFit ,ik

ii_ lltltt,lili,_l t,lil,ll_i ill _|l'+,l{tl i,lil,ll._i ili Ihl, ih,hllliliilitili

lil ,ill i'],l'_lli" ,,,tlllt'lllll' illlll _.i hi%x..lli'l|lll,lli'%-Illiiill, _]i,'l;l' 7' ' t'i'_ '+i")' '1'T (ITtl)
)41'iil'lillix ll'_,iill_, ill loirl41'r lli_,lllilll°ilil'lil'+ ,ilill llil',l' ii,,ll+.

li_ili'_ Ill,ill ,ill' llil',,l'iit x,,lit,ii till' '_,iliil' i'lli'll.4_ i',, _llql'd ilt ,i +, Ili,i_i I_l' ittitt_lllil'll llx ilia' iiililtiltli_iliillii
ii hi.l.411tll'llill'lii $ Ilililh, _,li,lll_' th'ltliiii,lti_lii. 'l'+l tlii,, it lil,i%

ll_' ,ul'.h'_l illlit tli_' llll"_l'iil _'l,;',iil' liillltl'l I_ iilill'i_oi_lit ili

ilk lil,!,,h,l'l lit iI,illllllli _, iillll tl!,il, ill t,il't,iil_'lli_ll_'l _l.- I('T",'f,I' 'T"I,'r, (,'I,'_,l ' i,r,+',T,t I+:
illil'iil _ _ illloililill'_ _ ill li,i_ i _ I!i+,llt ' il,illilll_i _ tli,ili Iiill',l' ,il

lll_.' Ill'llill'iii ;. 'l+lli', _iii4,1ili ',i_lll_l_il'+ Ilil' ill,il'ii_ __ I_l il!iililt 'lilt+ iliXl'i'_illli +illii,il]_ I_l'lllililil'll ill I+{,t. (17(1t Ill illit,iill

lilt4, lli_, llil._,ll Jtl'ltllllll% li",ltlili,,l' t'+lllil' ii liilli_ll_ ,illl'_itl ,'_' ' i_ lit +i Ill,Jill". lit lhllil'li_,llili "l_t". ('liliiliiiliiliilil'_ ,lit*

,ill '_ ili fill' ll,ili',ii/il .,llhilil_ii ,ili'+ _'+,lx _ llili', iitil ,i_ iilillll',ilil,4 ,I I,i'_l, ,_._,Ili,l_i li,i_l' Ill'i'll iiii[llil'll ll)

Ilia' I_ll',i'lili ' itl lli_ I-sli ll_ I;I.ii Ili,illi_l ilili'l'_i' ,I,+ ill

'I hi' ill,ill iill_li.tl, il_ lilliil,illllii IIl,ilil_i i iil I<{_1'__liAll .ilill I,;i I (ill(It Ili lli,i_ liil Ili_ lililiil Ill ,ll _,,lllil i_l ,1' i'+ lii _,l'l

_liil_ i_. llit,tl I_,l_' I_lil,iltll I_'+ Ill_' _,\ Ill | liillii,ili'll l llii .... ill'll. '_ilil. i' iilil_l ,_ i'_ ll_it_ii,+'<l

III,ilii%

i" l) . ) _ i i _ I _ ( Ililil Iltllilllill,llllill lit till Ill.,% tll','+iti,illtlil llllli Illl' olltlll lill,il._i'
iii+ltii i_i,ltil,l] l!illlll I i', ii',ii,llll Ill'li+lll II. I' iillllil4 tl,ili',

_li_ i_ \+ i', Ilil liliilltll I ill iliiilh,,+ tli Ill. llil._.+i_l_l IIi Ill,+' lllllii,ililili I_ iip_ll,lllli_:llliii,llt.,,. '11_t, ,,l,il,ll ,,_ Ill I.{_t i lfll;

'+illililollhlii I1_+' ll,ill'_llllli,oililtii Iliillli% 'I' i_ +it't+iti' ill, ll_ _t_iihl li_- ti.ltl llil tl_t' iiiill+tliilil tl _,_i+,ll Ill lit !']_I l1 lli _ill_
/l' I1 'sllil i' ( " I_ ._i xx _ Illllli'llii . I 'lillill.iilliilhll iq,l{ !i_ _'Ilii|ll,illil Ill I1,, I,-+li ll_i ;_.% lii,iliit ,T, +,lhl,ll,
iit ,_lliilitll,_t iI;li_ltllll _, ik I_i ,l_,,,li,.ttl _,,llil, ,, Ill ,,,. ._,_

'f' I'1" ,I,' ,1':" ,I,' i (l|i.l+l (lililli'll' i% Iltt_li '_ ,lli ll'l,lil+l'tl ill lli,' ililill,il l lli+lllllii,ill '
llillit ,lliltlii, il ill_ lll+,lllilll_ti_i Inlllll,iil ,ll %+ilii_ '_ I,,l',_ll till

l lil+ i itihlll,_l, i_t iitllliilli ,it til_ oilll_ ilil,i!,.tl' _l;t I lli<i_ ii_,_ i _tlll'il_,ii_ i+ _t illi _liliilill _llllt lilli,,_ iliill liil,II %iihJ, '_ I,,l',.l'tl

I_+.,lilii_,+ I_li [liiillil_lil' ll_'it'_ '_lil,_ illilliillll_ Iii I+illii+l ,l!llill,iiilx

,ithlilil4 ,i _il'+liiil'_ Iliilillilll_ ll'llii /i'; i i_ I_ i (l!.l,t ,itll'i

t. II _,_:lill_h+liii _ Ilii llt_plitl ,lllill_'_l'_. _lilill ll_,',,iililllii( tll_ll Illl'

_llliil liill+ ill il.' ili,ilii'_ /l' I', till il ili,II ttl_' I'il,,.(i lilllllil',

++l, ,,', ,111+ IIIIIIl+.llllili'il tl_t tl_i_ olilllilp_.',i. _lllllt II

-' ,t, i- ' _ '1 (lii"ti I,tl t,illl_+,_ _ll Illl' i'li'lllt'lll'_ Ill I)' ,lii Ill'til Itlill_lllli'liil

I +tl, llllll' tlii'_ ,ill' il.+'lllllillitll IIIllllil lil_ I,_, lilt' i iilllil ill

,i .... l.llllii,lll_, il. lllli_,liililili,tl ltollltiii i_ till +

1 t tl .ll_ llltt+li,_llllll lit _il ,1%llhll' |I1 ++,,+ tl ,i+. I,illi_+l lli,ili III il,.

il',_'ll II_il. , i,, I,IIh,l lli_' 'l:lil iil,ll41 ,ll tlillt!tl II,lllili

I1,,_ lii,llli_ l _ t'l,ill_iti lllll_+i_l',+ lit i).i%' '_!_ll,il i'llll_t!llill°+ III Ilii,(" _"ill I_lll_,il _li,ililloi+tl ,llllt_<f, illo+t41' .+tlillllill'_+ +,'., I_

Ihl, l,,lllllh i i,lii,illil.,_ ) .. . I , }., , } I1> illlll %lti II tli'!ll% _l "i'l |ill Illi lil_,!i'l tli'llill'lll _ li'_lll't;l'+l'' >
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;I.._I,,I,,I ,In,l!l_i., #d 't"'_l",t, li,,,ll,_hllhil_ *ITI,, lilr,'i.

I}1;' tlllllt',, I'I thai _lllll_l ,llh(l'_'_i'_ lit I1,, 'd,ih' ,'fl_l,lll,,l|

tltll'_ *!"1" i.l *:ll ll.' Is,llllilil,llllilhll ,_h', II'll111 IIi Ii.' IIl_l I i, ()
_i,ltt Ill '1' J,ltll I It!lilt ,|ll,ttl' II nll(.Ihl I.' I.d, _! Ilhit ,I, i'_

Ill,I _,_llt'.lL,{lll|,ll I! . '1'' ," '1" I_r,,, _l|tl /_1! Ihl'_ '.ll_l_ll
.-_ ,_ _, .

II_,,l t,l.,I (,' I'_ :,r,, I1' I_, m',l:_',,L ,ll.I *ir, o_,lh.,, ,,_ I I .i','l (1_1

iIl',lll_, I _, |1,1111_l,i ILlllh ,I i,llll,,)!_,tl,illl'_ l( I,iIn,ll.,llll_,_ I tllll

I. ,'d,ddl',l,HI I,,',. I1,'_11'_ II." *,l*_l_,,tb'l,_, Ill I 'i" {15";"
ltllll I I_)_ ','_dl! Ih*- b_..t-,,lthl I'11t1,_.t1,tll (I .i,'
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'i'l_i..,._li,,_ti4,tl,,_.ll},i,i,..,',',itllIf.._,'hivh'_'<lU_li_mill],_}} TIIL,,_L'm,ral_lutiullIra I':_I.il.l:i'_with A' I_h,ls

,_ulp:_[,_lh,l_'_lU_i_m',h,1t_,h,1,rodd,m_pv_'t__ht_dll,i _Jr_,ml._l_'_,iLlUulld,sillv_,<1isi<h,lllili_,diul,hI.il.lI_;i,,

_.,_q_i,,h.,ii_il,_ti_,_il,_ll!,ithu_iI.;lli,,l_,,t_il_l_liv;il_h'h_ l}_,Ul.i.'I"h:111,_I(,'L_illt}t}.,.,_uhili_,ihu'(_)Ira,,l_,run,,
flu._hlh,_,_Ii,_l_._l_,il_,,_I,ill,_l_i_,_l_,_m _i1uhilh_ vunh,d hi 1'v_l}h.1lU.,h_ l,hI._I(_I.,._,,1_h,d ira.,,i_m,,l.,,,

i_,i,,,,_I"._i,,,llii,u,_lII;{_vitll(;'.,(11.WI,,tlflu,Ira,,,,i,, ,,,,,i,,,,_,,_,h.',_IIm h. li,lil,u_il_r_l,,.x,,h,,n,,,IIit_ t].,

illi_|li_l,i|ill_, ,111_,I_,l_'_ili__l:u,ilm_h..rv,,;,n,_u,_.v,,.,._upp_,r]ml_v,,ul,i,,rodI',u_,_l,,li_,t_._l!,_thv_mn",l_mdi__

_l_,ih,_l_,,l.'_.,u_,,r_Idi,,_'_'h'd,_,hl_ut,,itl:lu,.,,_,,h'luLflu' h_m,1..v,t,,_,h,th,l,,/_l_ illI"._I.II_l_u',I'1',flu'',_l,',tltlltit_li',

h, _h'lh,' I'i_I. tlli_!. Ih,tii ,,t tl.',,_' _l,'tll_l', I_t_' t.... ['. _'"' 1

¢'",\,,,
+I'l',,_,l_tilltht.',_+ix,,p_._,i,,l_',_.,_,l_i'_,,hi,,,h(i° II ti";'.l_

"_I' ;i_,lK' _lh'l.:111],ti.'¢'i_,_'l|_'i.'hU"_|Ol'lliili_tht, I.........

_._l]lllllir__iI tilt'tl,ill_li_llil,iti_lllll,l|li\,I,,.|li{'LI)II)- }'"'}''_-

i.t,i,_llltl_,ils'l'.li",}I,,,',l.'¢'lll.,,_i_h,_i,ti_i,,illh,i

i,1_,tat1_,1_r,,h,,,,.,imlnr_h,lt_',11uIp_lml_l_h,,,,,_mi+. _i .._'{(' {_'"',,._,_,,,.J.i"°qil.....t_

11¢'_t",',it,_tv_l I_' the' 'q1111.tl,lthltl 111 h'1111', _._| _.'UlU ' l)...i_"'qll,,,J ' /"_'_l_i,l...ll} (]';'_I!

_I_LI ,l_ h,l l,,q ,,l_h I t,lll, f ,,,i_ II.' _lll|i l+*IJi

I} ,,,,,i_,II1'_,,.,,t_ _lll,t.t!} (iTii'

,,,,,i_I,,1,I,,_,,,i_,,,l,,u_,(,,1111_111+iII,,11_,_,ilI_I'_lqllll,'

]lll't,itl_,lli+| l,,_llh,_llhtX i. lllll1_'thiI 11_ If.,uh,I, Itlllll_/ illh'illll¢]il_lhl' 1_II]i_ _ ll|+IIlil

II,,f,I I,I IIl++l _11]t I ,+l_l,lll,lll '

'_. _It,IIIIIP IIIllll!l_l'_i I_[ lllill, lllitlt Ilo ll+l(llll'tlj{ ,hlrlt|lll.ttll¥1'.l. ( :11 liDi iI+[ i }, %ill 11 ,_

%%i, Ii Ill I, i , ] Illt |111 ,|ill 11 I+,1111111 )ll,_ill% ._' ,lllltl |]11

II,IIIt]mlk: llhIIIl_ J)' ,ill _ If'Ill *ill ,Illl'llhlll_l' |il I1,, Ihlll',, ( Itl_,l _ 1) +sill,, /

tl|lllhlll+q_ Ill I,'1 tl'_l ¢,111 1,, I],'_l'_l_l Ill,It I, '_llit'_ ti]|l

I'+IAI,III',I+ l.+l--lllt}|lllll llil+ 111,'I],,_ I_ llo,,l'l_h_,l],],' +_li, nl _, (' _I,_S,,.J lJ,.,,_ill,,...t (+1".,'?+

+l+ll_l+_++,I. I_uhuh+l II1 th, I_+,+ll_,_+l,+I,+,_l_u+++hl,,I II+_' (.,,i,!,,:t ' i).t_,.,,,t
,11_1+,'1,1114, ',ll_lllli!, ,lll],,lll4]l lilt lllll_,llll[ll_ql _ll lll,++l,II

li+ll!llll)l_ Illl,I lip,' ll,lll+Sl_,iilll +l rrlll,|llllils I'_ Iil1| ]_ll'l huh'_l

II1,: il,Itl'_l, illll,t|lilll 111l" lh_+lli._l +sill ml_,lltillh, tl_: (.,_ilI,,,,.I _ I),+II).X,I .J
+i_,lll+,l_, ll, IHl +. _l,.il!,t] tJllh'l ,iI_I. i,],il4,' _q1_,lll,q_ _x, II

_l,l,,Iq_,,1_,,u,+,,_i+_,ll,+,_ I_1,, lh,' +lpl+vU_l,u£,'m I1. ,_1_
|I_ ll(l,IIIi _l+|il_,ll _!It,t llil_ . _lllt ;' fht.ll lY • 11 iii I';_I t l I I' (,) I'1' t IT'_+,

+ "i'' l ................ ....' ' i



k. _..,dll

wl.,r¢, l' is tl_t, tran.,,fm'matitqh matris

i ' '"'''' it!) I ¢' i I I "_ i "_' I I ) ....
...... i .... _ , i , i " i (17,',)_

It,) _ I it ).' I I _',,.,)"" I 4p_,'; I _w_'' I ' ' " I ,',,,,:....

II_ i_l_pt'rti_m L)I If.' iilatri../1_md it.,,tin. °d_,dvativu. _m_' in tla' ll',d __llial,IL',, .,, ", ,,. _ lli_'ll is t'_p,i_ah',it h,
may _ lih' l& I. (I I:AI.Ill llultri\ tL'r,,n_,tlm, r_'sidt i.

I .- ; ,
I ,', () ,, : () _,ln:_,

[) I '._li,'l_'
I

I I) () ,,,'..,
() ..,, I

I

l&l, I,I Ig! Io " ill I':.I _I_'1'. Ii'%%Iih' tli_. ti/.lll._ll_lli|,ilhgl iii
I':,I _III _._

l.,h , ' , _, ll,al l"JI t ITT_lli,l', I.' ',',i ill,'_l_ lira, I', I. _I _II l.,,d_.,,5

,,, ,, ,: _,,, li_,),, I", I I17_1,.

%_hl ii. _ dill! Ill' |t11' I'II IIX (111 Ilhl|ll_l'_,
_l,h I, il,'lh1_'_ lh*' I_II I'_ I illhlltl_l lllil|li_. • iiiiii |ill (ill _i_.

(i, _li,im,_l,II _,hdli\ ,, ' _l,_,m' i.h,oll,.tit_ ,tll. thr tl"{lll*'l|l !, i I_"i ' _ "J
I1'1 iI'!'" .ll_, I ,l , I ,,.. [11tl'llll_ Ill :, ,, : ....

I l| _ I%/_ _' l'_'l"('qlll" Ih, ,*'I ,_I _l*ll,ll I'lill*llillll_ _lllll

• ! >' l>') ; I

II,lil_ll,lllh||ll,II _I II. llhll,tll_'! _,t i'_ I ,,1%5 _l_'il,
. ! . l*'l,ll* ,_ q_lll l,.iiillhll,ll_"_ hi ,i tllllli,lthlllllll _I| tli-%% t t_lllll

_'i,di/i'_l IIIIIII l'lll,l _ i_ l_llll%qill il_ ,_ ll'_I/ltl ( rlldllt_l_PtiNllh*#l

I11 Illllll l'd,,l, II,lll_hltlll,lll*ll| II,a_ l,'l,lh'_ i_li,. '_*l Ill _, II

tlllll_fl'Pllllllh'}i _ IIt11_'11ill %%hlll,lk_t _lh.I ;_l, tt I{(,.
'Ill,' li_l _ 1,_,I (i. %1,ll,ll llilhi|i{l!l_ III l:q _1'_2' I,, llhLll, i_,_ll_i!h.' lhq'nl' t'%i_!', l_i_ l_l_It |l,ll!',illilllhl|Itl!l tlht! I,[I_I

l.it If.' _', _nld ',ut i_ ,i l,l,{,lil_ ,_I l., mi_,_il_h.d ,._l,l,,li,,il. ,',I,_ ,l,i,l,_ ,,I lli, :ill,, l,,,,' ,d I, I _I I I_ _ ,lh X' I)' II
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Wlfile it is nl_ hmger true in genera] that Z'., and Z_'. arc when. lhc sul_script m cmtside .f tht, square lwackcts

rehdcd l_y Z;',, "2._,,/%. as was the c.asc I:or the. ]i.l.tJ- _l_,ll_t_.stile ruth row of the mnlrin within tll_. }u'ackeis.
.K_'nt'c_ussolldi_ul, tht're remains an associatiml h.,tween Agaill.it is evident that if either .( _r I.' is zero, tllen
Ill_,se two c_m-di,lah,s and flit, fl't'qut'llc)' ,t .... if tile e'of Z;_,, Z_,,/.,,. Even in the general case. however, il is
resp_)lldintr, st'aim" t,qnations are isolated in Eq. (I,qSL mo,_t rca._.).abl,, to trlllltqtte the matrices Z_ and ,71:: by
they appear as retaining only those eh.'mt'nts ZI,, and Z., corresponding

h) freclm,ncies .h,, thM are of ildurest. 'l'lle nmh'it.es of real

:;;:, ,,,,,z::, l¢,'Y(¢,t 7_"'7)',,'1,,,I.' ,rod imaginary parts of ei_,.'nvectors, ¢, and 7, are trun-
eak, d correspmldingly. Tnmcaled matric_'s are denoh,d by

and an _)verlmr, as previously st_ E_[. (195)appears a!h'r |rlll|-

_,., .r,,,Zl. I [(q, t 7¢ 'T) l,,,l.' cationas

t[:1L_,:,j ; 0

L_ '7(_-_ 7_ '7) ' -rl...............(# _ 7_;'7)'_' L'J (20o)

whcrc, when N m,_dcs arc rctaincd, This equation is in final fon_ h_r the simulati_m of a
[h,xiMe appendage on a controlled vehicle. It is thcret'orc

/,, __ : equations (168), (173), and (201), has advantages and
disad_mtages.

z',

Z:i q 5. Coml_arisotl of three alt,.'rnatire trausfornlatiors. Tile
_. . J tln't't' t!om'dinalt, tral_st(_mation._ t.mlsidert,d thus far do

Z: llOt t,xhausl the uscf_t[ p_ssibilities; indeed, the most co.h-

r. Z_ monly used tratistormali_ms have ,VI't |O l)',' considered. II
nmv nonetht'h,ss be al)l_ropriate to l_;Ulse tn review and

'l'l_c in.st general lonll of tilt' aplw,ldagc e_lllation iS
(I ,__._r_ ___ !':_I. (1t38). since it accommodat_,s a discrt,h,ly damped

aplwndagc on a lmsc mtalinl_ al a c_mslatll rate. In oll.,r
_-- 1¢' _"" " ' " ¢_] wm'ds, it is al)l)licabh' l. a dist.reh.-t'._w(linah" aplwndagc
_'7 17' 7 ' ' " ?_J etl_mli°n ()f fl"' form

Modal damping may lw introduced into these equa- M'i i _ D't i . {;'t i t K'q I,' (202)
tions in such a way thai they reduce i,_.thc homogenc(,,is
case to Eq. (197). Thi can lw accomplisht'd by inserting
the matrix 2 _,_ (see Eq. 197) at tht. a]_i_ropriate place wilh M'. I)'. and K' rivnm.'tri_' a_.l (;' sk_.w.svmmelri_..
in Eq. (200). The rt,sult is recorded as Eq. (201), which N,,!t, tllal I)' is sYmn..lrit, and Posiliw' d..t'ilfih., 1rid ntber.
enil)h)vs the syml)ol P' for the truncated 1-_invcrsc' writ- wise ,!m'estricled.
ten in more detail in Eq. (200):

I t I; ' (2BI) Eq. {173), .istlesign,_'d for elaMic sll'llt'tllres with arbitrary
ffl ' ' viscous damlfi_ig on a n,mfinally statiotmry ba,w. "l'l,u
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',,,q

eorresll_,ndillg discrete coordinate _'qualions are ti(m fi_r tilt, vehich, to accompany Eq. (201) would be
simply (from l']qs. 158 and 187)

,_t':i t ,¢Y,, _ t<',i #,' (2o3_0___

witlt allct,etlicient matrices symmetric and positive deft- [0 i __(,,.r..,,._ 1"/_'_'.,,-t-c,,."'r_, M] PT. - Ii - ml_-'E_4 .i
hilt,. If i)' is llot it pillynlmlial in 11' and K' (see Ref. 30),
the nlethod of lg_ss (Eq. 173) is most advantageons, for (205)
the reasons noted in the text-.preceding Et1. (178).

Equations for I'otor, damller, and ctnitrt)l system must also
lit, included, with suitable appendage-defornlation coordi-

lgn" all undaml)ed elastic al)pendage el) a rotating base, hate transf_Jrmation.
Eq. (1,1(1)is the discrete-coordinate equation

6. Modal an¢1][#8i8Of Ilolirotatin[!, struetiires without
M' 0 t G' :! i K' q L' (204) damlll,g, or with proportional damping. Various forms

of the discrete-coordinate appendage equation (Eqs. 202
This elllliili(lll lilts lit'i'll shown to be equivalent to throngh 20.t)have been noted, and appropriate transfor-
Eq. (200), which has the advl, ntage over Eq. (I68) of nlations have been considered. Attention has yet to be _
involving linlv real llnllibt, rs (recall that in Eq. 168 the given to the east, I

coordinates ill Y Ill'(' e(unl_lex, its art_' the eigenvectors in ]
q-t,which must lit, inverted). M'7i K'q --- i,' (206) I

1
which is lit once the simplest and lnost usel:u] systera of {

Equation (20(I) was modified and written as Eq. (20!),
which includes modal dainping, qhis step cannot lie eqnalions. By retnrning to tile appendage equation in its
justified in any fornlal way, since it obviously involves explicit form (Eq. 139), one can see that tiffs equation

• • provides a simulation of an appendage attached to a base
a change in the nlatheinatical inodel of the physical sys- that is nominally not rotating in inertial space. If the base
tenl. Modal diinll)ing is introduced in Eq. (201)in :;tle]l a angular-velocity nlalrix ,,, in Eq. (139) is assillned to
way that the llomogeneous equation reduces to Eq. (197),
which yields a sointion corresponding to l'.'.q. (165). This remain small, and higher degree terms in ..... ;,, and q are

• ignored, thell ,., nlay be replaced bv ¢J, and Eq. (139)
is lit lit'st a el'nil(, attl,nipt to llrovide S(llne mathenlalical llecoines
represenhiiilnl of the tlst'illlitioll aiteriuation tlilit must
tudelir fi)r a real slriic'llir(', in lilt't, the substitution of tile %' %'7'M (E .- .,: .... ,:,,,'tl/71l) 7i 4 Kq :--
solution of Eq. (197) into the expression for q in Eq. (186)
yields resuics correspoliding to the trile solution for q -M (_,,r- x't:,,_--Tx't:,,) 0"

front the trip half of Eq. (165) only wheli either y or ._ -- Mx2r,,l;/_Tll 4- Mx2±:,,m_'E_lOll4-A (207)
(alld all ,,,, . • . ,a,,,,) are zt'rli, hi the ilbsenee of dis-

erele dalnl)ers, lille Iilight nol:.,.,theh'ssrt,astmably neglect wliit'h is Iff the fOl'ln t)f Eq. (206).
eliergy di_iplilitni in ealeulatilig ,\,, and _'", but still

inct)rlllU'all siig!il nioda] danlping ilittl Eq. (201), using This simplest easc is of course am(:nable to anal),sis by
lliLsl t('sl t,xperit,nce as il glii(lt' in seh'cling ._,, ' • ' , ._v. tin)' t)f Ihe three methods discussed earlier, lint more
This iil'llt,(,dilr( , hivolves lllinllr niiithelniilit,'lil iiiaifeii.san(.i,, t,t't'ieielit pro_edllres t,an be found in an.v textbook on
lint it illaV lit, considered accephible enginei.ring practice, strnetural dynai'hies (e.g., llef. 11). 13et,ause of the avail-

ability of proofs in standard references, the classic iech-

Tliree possibly us('fiil filial [llrnls o1 the appt,ndiige niqnes of the strnelnral dynainieist are applied here to

i'llualions ]ilive lleen provided (Eqs. 168, 173, and 201), Eqs. (206) and (207) witiiout pr(iofs.
lind their ildvali(rlgt,s illid disadvantages discussed. Each

I)l thesp lnilst ill t.oilrse lit, at.coinilanit, d b)' the reinainhlg As noted in a somewhat broader context in Ei 1. (147),
etluatitlii_; tlf nloti()ii o[ the vi,hiele, as derived in the pr(,vi- the honlilgeneoiis solution to Eq. (20t3) or (207), has the i

(ill.S set'lion, with appropriate transfllrniiltion to ilplR,lld- form
llg(, lntlda] c_liirtliilliles. For t'._ainple, the vehicle rota-

tililia] etlUillilln t.tlrrespllndilig to tilt, ,qppendage equatioli _ c,x,t@s (20 s /(lliS) was recorded as Eq. (169). The cerresponding equa- q .... ,., c,J. I
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wl,erc ,\, and q,_are eigenvahws and eigenvectors available or. mm't. specifically (from 207),
from

[ M' A_ -t- K'] q,J = 0 (209) _TdLM(X,,,: . _2,:,,i:i -- '_X,-,,)i[ - _;r ,'fiX,:,,F '1tl

+ q-,'M,,:,,m_'E'/_lt4 (,,',\ (216)
asslmfing the independence of q,J, j= 1,''' ,6n (pre-
viously pr.wq.). The eigenvalues from Eq. (209) art,
i.,mginary, and exist in complex conjugate pa_rs, i.e., The ratimmh' ftJr the incorporati_m _f modal damping
,\ __ . has been essentiall.v phyical; it has simply been observed

......... t, :. from test data that dynamic simulation of a structure can
bt' accomplished more accurately by inserting the matrix

Consider now the 6n bv 6n nmtrix _"in Eq. (215) than b.v omitting it or guessing at an ap-
propriate velocity coefficient matrix D' to add D'¢ i ttJ

_-_[q_6'-' . • . q_';"] (216) Eq. (206). It is now possible to establish the nmthematical
significance of the assumption of modal damping, hnagine
tb.at Eq. (206) is modified by the incorporation of viscous-

and the transformation damping terms.

q -- q"l (211.) M';/+ D'q -4 K'q = L' (217) I

IThe orthogonality relationships and that D" is a linear combination of M' and K'.

D' :- _.;tl'-4- ilK' (218)
,/,""M',h -i :- 0. k # j

(212) witlt , and fl scalars. The transformation q = qni con-
q,_rK' q,-_= 0. k ./_ J sidered previously, with a pretnultiplieation by q,r. then

yields
are well known. With suitable normalization of the eigep,-

vectors, the condition //4. (aE + fl_") ;14- tr_,/= 4,r L' (219)

6_'"31'q/= 1, k _ 1. • • ' 6n _213) Since ,E -4 tier_ is a diagonal matrix, it does correspond
to modal damping, with.

can be impost, d. These rel;,titmships permit the trans-
fornmtion of l£q. (211) into Eq. (206) to provide (after a + fl_ = 2._,_'i (220)--

prenmltil_licatitm l_y 6 r) The two scalars c, and fl may be chosen arbitrariiy, and
with the choice of these two numbers all values of the

;i 4 _r_,j -.q,r L' (2"4) percentages of critical damping /.',, ' • ' ,i".... are estab-
lished. (In engineering practice, nlore than two wdue:; of

wllere, its previonsl.v, modal damping ¢,,''' ,,;'_ arc often prescribed inde-
pendently, which involves a minor mathematical contra-

¢=':=_ Equation (216) is the final form of the appendage
., equation to be used in a space vehicle simulation when

0 it;.,, 0_e appendage bast, is not so.pposed to rotate. Thus this
is another alternative to Eqs. (168), (173), and (201).

Truncation of the nmdal coordinates '1,. ' ' ' ,'1,,, to Equali_m (216) is to be used in conjunction with equa-
the st't 0,, " " " ,,/_ is accomplished as previously, and tiot_s of motion of the vehicle, the rotor, and the damper,
s.vml_olizt, d bv an overbar. M_tlal damping may also be as well as the kinematic equations and control system
incorporated, to obtain equations required for a complete simulation. Because

the b_kse rotations are small, many of these equations
"-" :_ _r ] tr/4 2_'_#/4 _"_/ (215) simplify substantially. The vehicle rotational equation has
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already been recorded for this special case as Eq. (130). in tilt, simuhlti(m. This altcrlmtiv<, dot,s not prccludc tilt, •
With tile tr'msfi)rmati()n q :- 4-1, this cquation bt,¢_omes seh'ction o_ tim transfi)rmation q = _/'_lof Eq. (211), but

it rais(,s tim possibility of anoth,,r choice.

__ (,,.'1'_,,_ R_r,,'',,._' .J ,,.r__.,,t)M_ ,_ff (221) It sho_lld he noted that tim det.isioll to w:'itc tht vt,hich,
translati:)l;al equation in terms ()f tlJ(. coordilml('s X _)t'

Thc danq)cr t'qmltioIL (13.1) .dllq)lifit's to the vt,hich, mass ccnlt,r (:hi was an arl_itrary ore,. ()m.
could as wt,II work with tilt, i,Jt,rtial pc)sitic_ll vcctor

m (1 - m '_11)_'-;, d_ .!-k_.:= (say x)of tilt, p_int (), fixed in boll> B, and c()rresp(w,d.
" lug to thc CM whcn thc-vchich, is in a n_mfimd (unde-

mE''[--F/'_I1 _ bE:'ff _ .",.,,t,,_,_'] (2'22) forlIH'd) state. Thc_,. ill tt'rms of l)rt'vioLIs notati(m (st'c

"l'llt, rotor ('quati(m (136) l)cc.omt,s Fig..I),

r -----_7(_ -_ E:'' i;) (223) x = X + c (225)

If the nominal vahlt' of th(, rotor angular mom(,ntum h and the translational equation of the vehicle (Eq. 131)
relative to the hast B_ is h _ "'= ,.1_21:, and the diffcrencc bccomes
12- _ is assumed to l)c small and is included in the
linearization, the vehicle-rotation equation (221)bcco,nt,s t: = [(-)._:- _:--,;,_' 2_? 7,,,7,c] (226)

T - I* 0'-- .7(..)E:*b _- :)',_'E_+ mb_'E'-' where

+ (,,r _,__,.'_ _ _2_:7)M_.,_" (224)" _1.' _ _ .;_ . _

x__ {i}"' x (227)

Equations (216), (222), (223), (224) arc a eoml)lete sys-
tem _ir dynamic _'quatitms fi)r a dual-spin vehicle with a In the linear appro>Smation, with ,.,= ._i,thin is
de-spun platform to which symmetric rotor, damp(,r, and
flexible al)pcndagc arc attached. Vehicle simulation re- F--- 911[[-_._:- (_:] (228)
quires only tile inco,'poration of control laws for r and T.

The appropriate form for c cal_ be obtaincd l)y linearizing
7o Modal a,alysis of nonrotating structures usi,g canti. Eq. (133) as

lever modes. As noted at tht, l_eginning of Section Ill-D.

,norc than one uscful coordinate transformation n,av I)(, "= ._x.r (M / _I1);/ -- m._F'___L_// (229), e.ii_.;( | .

availahh, for a given set of equations. The preceding

equations of moti()n for a dual-spin vt,hiele with a de-spun so the veh:cle translational equation l)('e(mws
platform provide an examplc. The final set of equations

(216) and (222)-(224) wcrc obtained by imposing the F,,'311= el:_-:L.-_i,,(M/}ll)_i-t. m_'E'/).11 (230)
appendage coordinate transformation of Eq. (211) on a
s)'stcna of (,quations (207), (130), (134), and (136) that
served as equations of motion of the appendage, the Althot_gh it may seem tmwise, it would not be incorrcct

to inclt_de Eq. (230) in tilt, system simulation (just as
damper, the rotor, and tim total vehicle in rotation. Note F/:}I/ = e_,_ is carried ahlt:g with the other equations of
that the total vehicle translational equation (131).is not
inchtded explicitly in this system. The quantity (-)X that motion, exeept for the differences of coupling and corn-
characterized the vehicle-mass.centcr acceleration did plex;ty). Now if F 11!from E( 1. (230) is substituted into

the al)pendag_, equatfim (2117),c(,rtain cancellatioos occur
appear originally in the equations of motion of the ap-

to provide
pcndage (see E( 1. 95), but this quantity was removed

when the appendage eqnat!.on was written in the form of
Eq. (139), by substituting _.)X = F,/_}I from Eq. (138). This :,Hi _ Kq ...... 31 (_,,_:- _:,, _1 - 7_E,,) "0"- M_.,, (.l'x"-_ h
step was motivated b)" the desire to separate tile vehicle- (_ql)
trajectory problem from the attitude-dyl,amics problem,

which is of paralnout_t interest in this report. One could This equation al,_o has tilt` forln of Eq. (206), so tl,;
of course equall)' well retain the expression (-IX in appendage coordinate trans,_mnation procedure applied
Eq. (139), and retain the translational equation F = ")il('lX to Eq. (207) applies _s well to Eq. (231). The vigvnvah,vs
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am| eigeuvecttns for tl.'se twLj set_ of t'quatious differ, of To properly t,vahmte tile advantages and disadvantages
course, .so tl.' tral,s|'_,l,mfi_Jll iu Eq. (211) _:_written as of the alternative coordinatt, systems, one must make it •

plLwieal interpretation. Both _1,,,and _l;i,art, classical modal
q ,1,'q' (:232) coordinates, in the sense that both measure the participa-

tion of tilt, entire appendage structure in a vibration at a
t() providt, :i distilic'li()ll. The transformed version of gi'¢eLl fre(luency (_r,,,or (r;;,), with all portions of the strut'-

Eq. (231). :llt(.r tllm('alioll a,d t],, introduction ()f (lamp- ture oscillating in phase as the structure deforms har-
ling, is monically into a given mode shape ('b" or q,;;,).The mode'

shapes and modal frequencies in question differ only in

r;'- ! 2S'a'_' t (a')';)' the boundary conditions iinposed on the appendage.

_"M (_..,: _,:,,R"- 7'_:,,) b".- ,b' 'M E,..,,,-,_'-_-,_'"A The htlnlogeLl,'oHs counterpart to Eq...(2,_31L,____
(233)

5l 0 + Kq = 0 (235)

In addition to this appendage equation, one mu:;t carry
along equations of motion of rotor, damper, m.td vehicle corresponds to the frt.t' vihrations of the appendag_ while
rotation, which art: the same as Eqs. (222)--(224) except on a fixed base. Accordingly, the modal coordilmtes in _f'
that _ becomes _' and i7 becomes _'. One must also retain are called the eantih, cer mode coordinates. Their signi-
the vehicle translational equation (230), which appears ficance is easily visualized, and the cak.ulated mode
wht,:l transformed as shapes, frequencies, and damping ratios are easily con-

firmed by test.

F 11_= e)._:_ _'.'_':.(M 711)_"_" + m_.'E'/ll# (234)
The homogeneous form of Eq. (207) is

The change from modal coordinates _# to modal co-
%' %-7'

ordinates ,j" may app_'ar to be of dubious rnerit, and _! (E--_:,,-.r M,/317)ci + Kq = 0 (236)

indeed it does have disadvantages. It has apparently Tiffs equation describes the free vibrations of tilt, append-necessitated the retention of equations of translation in
age attached to a base that i.,;constrained against rotation,

the attitudc-control simulation of the vehicle, thus adding but free to trai_slate as the base mass is pushed around byto the dimension of tilt' system of equations being solved.
Fnrthermor<.r, this change violates the objective of seeking the shear forces at the base of the appendage. Note that
the transformation that uncouples the greatest number of the phrase "bast, mass" actually includes the mass of all

of the vehicle t'xc,.,pt for the appendage in question (evenequations, since the equations of translation newly "!dded
if other appendages are present). Experimental corrobora-to the simulation-(Eq. _231) art, coupled in the modal

. tion of the mode shapes, frequencies, and damping ratios
coordinates ,f. would be difficult to accomplish directly. In fact, when

these coordinates are used, the modal data would probably
The primary adva_.qage of the alternative coordinates ,f not be obtained directl:,, from Eq. (236). They would

(as opposed to 'It stems from the convenience of their phys- instead be computed by first applying to Eq. (236) the
ical interl_retation and experimental corroboration, and transformation q = 6"_f' to obtain
from tilt. fact that any structural dynamics organization

has the immediat,i, Cal)al)ility of computing the eigen- ;i'--_b'_(M_E,,_;,,MT, il)4/;i"+ (0,")'-'r/' = 0 (237)
vahtes and eigem'ectors A;, and _;,, m = 1, • • • , N. To

these pragmatic arguments may be added the fact that and tht'n after some truncation seeking a new transforma-
for most space v,.'hic!es lilt, transformation q -= _',1' is tiou to diagonalize these equations. The cantilever modes
almost indistinguishable from tI - _v, and the added would the, be available from the prelimir, ary transfor-
t'qualio_i of motion (23.1) oti,.ll does not actually have to marion, and experimental corroboration would concer,-
rt,n_.aill in the simulatimi, because the terms iuvolving _i" trate on v.vrifying the cantilever mode data.
_Ir_,small whc-n t}i(' al)pt.ndage is a sm_Ltl part of tht,

v_.'hich, mass. Finally, it can be argued (as will be shown) For vehicles with more than one appendage, it may
that when more than one appendage is attached to a happen that the canitilever modes simulate the vehicle

given bast,, the coordinates _/" might simulate the append- behavior bt,ttt, r than the modes with the base rotationally
age response for certain vehicle motions even better than fixed and translationally movable. Consider for example
the ct_rdiuates r#. the rigid h_nly with two identical and symmetrically dis-
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(b) SYMMETRICALLY DEFOP-_D (o) UNDEFOP,MED (c) ASYMMETRICALLY

DEFORMED/

-- ___- - INERTIAILY FIXED £1NE .

(e) CANTILEVER MODE _d) UNDEFORMFD (,f) MODE WITH TRANSLATIONALLY
MOVABLE BASE

_
Fig. 10. Vehicle with two appendages

posed appendages shown in Fig. 10." The sketches in boundary conditions of tile _tsymmetrical vibrations shown
Figs. 10a, b, and c show the vehicle as it might actually in Fig. 10c than do the modes in Fig. 10f. Thus, for a
respond if it were rotationally and translationally free. given truncation, the cantilever modal coordinates _c are
Among the many modes of vibration of which the vehicle conceivably superior to tile less constrained modal co-
is capable, the two shown in Figs. 10b and c involve ordinates 7. This condition can occt:r only for multiple
symmetrical and antisymmetrical appendage deforma, appendages, however. Since it is always possible to treat
tions, respectively. In either vibration, the vehicle mass any number of structures attached to a given base as a
center must stay on the inertially fixed line shown, but for single flexible appendage, the theoretical advantage set'ms
the symmetrical deformation in Fig. 10b the base-fixed always to lie with the modal coordinates corresponding
point O moves, say, a distance e. If i_ow the appendage to a rotationally fixed but translationally movable base.
response is to be simulated by means of a single modal (The alternative method, which permits rotation as well
coordinate, either '1"or _;,one must judge the acceptability as translation of the base, is pursued in Section IV.) ....
of these coordinatts as the corresponding mode, shape

conforms to the actual deformations shown in Figs. 10b A practical compromise can be introduced that per-
and e. Tb.is correspondence will depend on the faithful- mits the pragmatically attractive use of cantilever modal
hess xsqth which the assumed boundary, co:aditions of the coordinates without the addition of the vehicle trans..
appendage match those of the actual vibrations. As illus- latioaal equation into the _imulation. There is no
trated in Figs. 10e and f, the cantilever mode permits no obstacle to the use of the tr:_nsformation q -- ckcv_
base translation, while the mode with base movable only in Eq. (R07). After multiplication by ff_r, one obtains
in translation does allow the base to move an amount Eq. (237), but with right-hand side ff"'L'. A;though
8 < _2. Thus the boundary conditions shown in Fig. 10f these equations are not uncoupled, because of the terms in

,,- _r , , these terms are generallyprovide mode shapes better suited than the cantilever -_'r(M,_:,,,_:,,M,_,I) ep"_'_
modes to stimulate the symmetrical vibration illustrated small. Truncatior, can then be imposed without over-
in Fig. 10b. Conversely, however, the cantilever modes, whelming concern m most cases, and the result is the
which permit no base motion, mole accurately match the appendage equation (with damping added)

[_ - _,_,_1,.,:,._,.(_t/_106_]_?+ _,_ + (_,)__,=

'Tiai_example was _uggu._tedby R..M. Bamford.

)
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This aplwndag¢: equation could be ohtained equally well accommodating all forces applied to 8, hy tile appendage
by replacint_ the expre::sion _-_¢in Eq. (233) with its A, tile translational vector equation is simply
_.qtuivalcnt frolr.i Eq. (234).

f + f' = _Tz'

E. Method of Synthetic Modes In terms of the vector arrays {b} and {i}, fixed respectively
in B_ and inertial space, and related by Eq, (53), this

At the begimling of Section III--C it is noted that there vector equation becomes
is a basic choice to he nmde in selecting the dynamic

system for which equations of motion should be written {b}r_ + {b}'r/'= '_11'{j}T_ = q]l' {b}r e_ff
in support of the flexihh,-appendage deformation equa-

tions developed in Section III-B. In the vehicle equations which provides the matrix equation
derived in Section Ill-C, the dynamic system chosen is
the entire vehicle, including the flexible appendages. The _1l' 6JP = [ + f' (239)
vehicle equations, in conjunction with the appendage
equations derived earlier, provide a basis for a complete The rotational equation of the system B, plus B:_may
dynamic simulation of the vehicle. The coordinate trans- similarly be written as

formations presented in Section III-D are for the purpose _d

of making the simulation equations more usefu_ for prac- I + 1' =r-ff (1" co + h) (240)
tical computations.

where the external torque about the system mas:_ center
Although the approach adopted in deriving tl'.e vehicle P' is separated into I and 1', with the latter accommodating

equations is always valid, the resulting equations may all torques applied to B_ by the appendage A. Here r is
not in every case be in a form suitable for efllcient tom- the inertia dyadic for point P' of the vehicle excluding
putation. For this reason, equations are derived in this the appendage, and co and h are as defined previously.
section that serve as alternatives to the vehicle equations Thus the expression I'. to + h is the sum of the angular
of Section III-C. Whereas the equations of motion pre- momentum the system would have with a nonspinning
viously derived were for the entire vehicle, here the rotor plus the relative angular momentum contribution of
appendages are excluded from the system of rigid bodies the rotor relative angular velocity. The inertia dyadic I' is
for which equations of motion are written. The influence constant in basis {b}, so the differentiation of Eq. (240)
of the appendages on the motion of the rigid bodies is yields only
reflected as a contribution to the external resultant force

' ' " I' h+toand torque. 1 =___."to �toX • to + X h (241)

Equations of motion are to be derived here for a
vehicle slightly less general than that ill,.,strated in Fig. 9. In matrix terms in basis {b_}, with the definitio'ls
The nutation damper B._.is omitted here, since it would
contribute Wrms to the equations that differ little from 1= {b}rl, 1'= {b}rl ', I'= {b}rl'{b}

those derived in Section III-C. Only one flexible append- (242)
age is admitted, since the extension to two or more ap-
pendages is a trivial matter of repeating certain groups Eq. (241) is equivalent to
of terms. Relative rotation fl" of the appendage and its
base is accommodated, since it is for vehicles in this class I% + v,,-I'o,+ h + "_h = l + l' (243)

that the method of synthetic modes may prove advan-
tageous. The apparent simplicity of Eqs. (239) and (243), in com-

parison for example with the final equations of Sec-
Again the Newton-Eulcr equations of translation and tion III-C (Eqs. 129 and 131), disappears when the

rotation are to be derived for the dynamic system, only appendage force [' and torque l' arc calculated exp!icitly,
now this system consists merely of a rigid body B, in These matrices must be proportional to the deformation
which a symmetric rotor B., has a fixed position and of the appendage, which is assumed to be linearly elastic.
orientation. If P is the ineltial positioo vector of the mass The explicit expressions for 1' and f' as linear functions of
center P' of this system, _Jl' is the system mass, and the the deformation matrix q are obtained somewhat cir-
applied resuhant force is the sum f _-f', with the latter cuitously in what follows.
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Consider initially the forces and torques transmitted to special case of vibrations on a fixed b_se. This same sub-
tile base of an t.lastie body A vibrating on an inertiai!y stitution into Eq. (235) yields a solution for which
fixed base. Ill this special case, the only inc "_! accelera-
tions of the sub-bodies of the appendage' .,,use due to _' --- - (,:)'-' 71' (250)
vibrations, and the forces transmitted to the base art:
simply the inertial forces induced by vibr._tion, i.e., so that Eq. (248) nmy also be expressed as

/' = C r "_ M._" (,_')_ .q" (251)
f'= {b}rf '= -{a} T _ ,,:ii" (244)

' ' and

where (as previously) the vector basis {a} is fixed in the l' = [C _ (,_r._:,,_',-r-'-,,t:)'_r+ _'_r.crt....,'.t:,,J'M_' (t:)" qc
appendage base. Equation (50) provides {a} r = {b}rC T,
so the matrix equivalent of Eq. (244) is (o.52)

Aithough Eqs. (248) are restricted to the fixed-base special
f' =-C r _ m'iP (245) case, and Eqs. (251) and (252) were obtained from

'-_ Eqs. (248), still it can be argued that the expressions for

The vector torque about point P' is then given by /' and l' in Eqs. (251) and (252) are not se restricted, and
indeed are completely general (for an elastlc appendage).
This follows from the necessary uniqueness of ti_,._i:o_c_

1' = {b}r/' = -{a} r _ (m'_ii" + I'fl') + {b}rff/' displacement relationship of an elastic struc::_e.

(248)

Thus Eqs. ('9.51) and (252) may be substituted into
where p = {b} r p is the vector from point P' to point Q Eqs. (239) and (243) to prcwide a general set of equations
fixed on the interface between the appendage A and the of motion of the rigid body to which the appendage is
rigid body B,. The matrix counterpart to Eq. (246) is attached, as follows:

l' = -C r _ (m"_'ib' + I"_") - _C r _ m"ii" (247) _7l' (-?P= / + Cr -.,_:,,vrM_. (_)'-' rt" (,.e',53)
/_=1 /I ,:-:1

I',;, + _I'o, + fi + "_h=
In reims of the matrix q and the operators _t:,, and x_,,_:
(see Eqs. 83 and 85), the ex rp_x._siorm_/' and l' can be l + [C r (I;r,,_ + _r:) + '_r vr 1t... .-,:,,, Mcb"(o_)_"_7_ (254)
written as

These equations must of course be augmented oy a rotor

r = -Cr _.r M_ | equation (e.g., Eq. 136), and perhaps also by c_ntrol equa-
(248) tions and kinematic equations. In addition, some form of

-- '_ "" _C_' M_l' -C r (_r,,r"_f_ + .,,,_:Mq) - lr the appendage equation is required. The _nal results of
Section III-B would suffice (e.g., Eq. 84), or the individual

These results apply only to the case of an appendage sub-body equations of motion recorded as Eqs. (79) and
vibrating on a fixed base, and more general expressions ..(80) may be employed. Whichever are selected, the ap-
are required for the problems of primary interest in this pendage equations must be subjected to the transforma-
report. The necessary generalization is most easily ac- tion q = _r: for coordinate consistency.
complished after transformation of the appendage de-
formation coordinates q into modal coordinates. In the The final system of equations of motion is useful in
present restricted context of appendage vibration on a space vehicle simulation only if su},stantial truncation of
fixed base, the appendage vibration equations are the the appendage deformation mat_ix _/" can be accom-
"cantilever" equations of Eq. (235), and the appropriate plished. This step cannot be ung, ertaken casually in ap-
modal coordinate transformation is plication to the equations of rr,otion (253) and (254) of

the rigid body to which the agpendage is attached. The
q = _ (249) truncation rationale advanced in Section III-D favors

the retention of the modal coordinates with the lowest

as in Eq. (_',32).The substitution of _/'= _"/_ into Eqs. (248) frequency, and this policy often produces seriously de-
provides an alternative expression for f' and l' for the ficient representations of t_,aeforce [' and torque i' applied
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_1__ ' . i silrlu]atiol} is deficient only in its exchlsi(}niff tllerigkl-
r'- body mod(,s of the mast. Although this may serve as a

) " cone. ptual _,xplanation of ti_e prol)lem, tile difficuhy is
T" _]) not rectified simply' by adding rigid-body modal eoordi-

f'_

I L/ / ...a) hates to tile modal deformation eoordinates in _', since
, ////- ,thiswould unduly increase the interaction forces. ()ne

;/'////A PPENDAGEA illay instead devise "synth{;tie" modes for inclusion in 7/',

/ as frst sru4gested in Ref. 28. This procedure is briefly out-
lined here fi)r a special c_tse that serv,.s to illustrate the

, method.

RIGIDBI Consider a restricted prohlem of the dynamic siml,la-

i

: BODY I tion of a vehicle consisting of a rigid base B and a flexible
appendage A. Let tile base B be restricted to small de-
viations from a state of inertial rest, while the attached

appendage A rotates relatiw_' to B at a small scanning
rate.

Fig. 11. Example for faulty truncation The base equations (253) and (254) then become, in
the linearized approximation,

to the appendage base (except when the bast, is sk,-
tionary). This fact is easily illustrated with a simple '3_I'P = _ + CrXrr,,M4'"(a_)_ _ (255) I

example, l'b"= I + [C r (_r,,F+ X,r,_:)+ pC X_:,,]M_ _(_)_ _~ r ,r ('2,56)

Consider the vehicle of Fig. 11, which consists of a In combination as a single matrix equation in the 6 by 1
rigid hody B with a cantilevered elastic mast with a tip matrix variable
mass m that greatly exceeds the mast weight. It is evident

by inspection that tile lowest-frequency cantilever-mode [-_t
response involves transverse bending of the mast (see U-_---- (257)
dashed lines of Fig. 11). A modal response of much higher
frequency t,orrcsponds to vibration along the longitudinal '
axis of the mast. If this high-frequency mode is excluded these equations may be v:ritten as
in tile modal-coordinate truncation process, the mast-
vihration response and the transmission of forces and ]i) = A + ZL.oCr_r,,M_(¢t')2_ _
torques to B is faithf_,.lly represented if the body B is

_,l' _/C,,T 7' _c+ X,,n ICe (_,, F + ..,:) + X,:,,] M¢k_ (_)"
inertially stationary. If, however, body B is inertially
accelerating, the force f' and torque l' are grossly mis- ('258)
represented by this truncation (although an adequate
n,presentation of mast deformatior,, may be preserved), where the new symbols are
hnagine for example that B is accelerating at a constant

rate G. ,_.long the centerline shown in the figure, sothat f")_E ' 0_
the appendage reaches a steady-state small deformation 1_ - - I

I I'after vibration attenuation. It is then obvious from first

principles that the fi,rce [' must be of magnitude mG and
must l)e directed along the indict.ted centerl._ne of B, and
and the tor(lue l' must be of magnitude rage and direc-

tion nornml to the plane of tire paper, wh_,re e is the I__]
eccentricity of m as shown in the figure. Yet if truncation A
preserves only the transverse mode sketched in Fig. 11,
the force r in Eq. (2.-31)must be directed transversely to
the mast, and tire torque must be of magnitttde r L, where It should be emphasized at this point that the number of
L is tire mast length. One might say that the tluncated rows in the matrix operators denoted by X_:,,and X,,_:is
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estal,lislJed soh,ly Iw context (see Eq. 8,5). Because the _ _ _q_,.r M (X_:,,C--r,,_;T+ X,a,:C Xr,.r

matrix (:J in Eq. (258) is 3 by 3 and the matrix A is 6 by 1, _'Xr,. C ..,, : .........- % - X,:,,C_XL.I (261)
the pr_.mlnltil)lier xr,, must be of dimension 6 by 3. The
premultiplier ..,,,,','rof the 6n by 6n matrix M must, Lowever,
be of dimension 3 by 6n, It is conceivable that a symbol In terms of the matrix -1, the syst(,m equatio.s of motion
such as X,:,,may appear twice in one equation and rep- (258) and (260) become
resent two matrices of clifferent dimension, as e:;tal,lished

hy context. ]_i = _ ar (.,): rf -_ .x (_2)

and
In conj.nction with Eq. (258) for body B, one must

consider the appropriate appendage equations of motion.
These must be constructed from d'e ingredients of
Eqs. (79) anti (30) for the appendage sub-bodies, follow- a[) + _rX - ck"rM (X,,_ - _'Xt,,)6" (26.3)
ing a pattern established in detail in Section III-B, and

c:dminating in Eq. (84). Present interest is restricted to These equations are in a form ,yell suited for practical
the case of small ,,, --_0, e _-_0, and variable C. Appendage simulation studies only. after truncation of coordinate ¢
equations of the form of the cantilever equations of has been accomplished. As previously noted and illus-
Eq. (231) are sought, with added terms as necessary to trated with the example of Fig. 11, coordinate truncation
accommodate the slowly changing direction cosine matrix must be undertaken very cautiously if valid representa-
C (or the corresponding angular velocity Lv'). In Eqs. (79) tions of interaction forces and torques are to be preserved.
and (80), the only added terms that survive linearization
are I'(_" and -m"_'_ _, respectively. Thus the necessary

modification of appendage equation (231) yields (with _; Coordinate truncation is greatly facilitated by the phys-
replacing (-_3_and _ replacing R) ical interpretation of the elements of the matrix -1. Cor-

responding to each modal coordinate in r/" there is one
row of six scalars in the matrix .1; i.e, the jth row of .1,

3t_ + Kq = -M (E,,EC - Xt:,,C_- 7XE,, C)b" consisting of .1_,, • • • ,.1_,_,corresponds to the jth modal

coordinate _/_. From Eq. (263), the steady-state modal- M.:,:,,c_ + x - M(.:,. - r'..'_,,)fi,,
response to a constant base acceleration [' can be found

('259) to be

¢ = [(,,,),]-,.1tr (264/
A complete derivation of this equation may be found in
Ref. 28, although notational differences must be recon-

For the/th mode, the steady-state deformation is thereforeciled to obtain confirmation. In terms of the matrix U

of Eq. (257) and the cantilever modal coordiaates rf of
Eq. (249), the appendage equation is (with modal damp- _ =
ing included) _/J °_'_ ,_a_ aj, [_'_

;/_-,-2¢",,_V+ (,,O_,f'= =.3 _[a, _;,+ a_/;._.+ -1,:__,

-¢"M(xo,:C- z,,,C_-'Cz,,.C)',_ 0 + ,xj,ff, 4--1j..#_+ -1,o#.4 (265)_" qd".

_ _r M X_:oC xr,, U;+ _cr ,1 -- tk̀ 'rM (Xot:-- _rXE,,)(Y' Substitution of Eq. (264) into (262) yield._further physical

(280) interpretation. The result

Equations (258) and (260) constitute a complete set for 1/_ : _-1r .1{'; __ .'t (266)
dynamic, simulation, requiring only the specification of
external environment or control law for the explicit de- provides in the 6 by 6 matrix _.1r.1_; a collection of the

termination of .% A, C, and h". Inspection o', these equa- forces and torques (about .£") applied by the appendage
tions reveals the repeated presencxr of a 6n by 6 matrix, to the base due to a constant base acceleration. Conse-
here defim.d as a (somewhat different notation is em- quently, the scalars -1,, have been called "dead-load co-

ployed in Refs. 2[5 and _), as given by e_cients." The 6 b], 6 matrix ._,r.1 is evidvntl.v jt_st a
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collection of inertia-like quantities. As a matrix of 3 by 3 where N modes are preserved and i, j range fi'om 1
partitions...x'l_\ may t_, written in tilt, folm through 6, it is e_'ident that by adding six synthetic modes

one can adjust any truncated version of _7'x into precise

i ' -'1"ti_ t corresl)ondencewiththeknownrightsideofEq.(267),
)11-zE I (267) without even confronting the _ecessity of solving simul-i it

_.t._ ,i]lt _t I _ - taneous algebraic equations. If the six dead-load coeffl-
' cients of the first synthetic mode arc chosen so as to

who,re, )11_ is the mass c_t"t]_c ,tpl)endagt,, it is the inertia provide exactly the correct first column for "x_'S, then the
matrix of the appt'ndagt, with respect to point P', and first of the six dead-load coefficients of the second mode

I_ is tile matrix in basis {a} of the vector from P' to must l;e zero, and the remaining five can be chosen to
tile appendage mass center. Note that the mata'ix x_.x is match the second columns of -x_'S and ..x_a. This pro-
sw||||lc,trie (since tht' transpose of the skew-symmetric cedure continues, each time with one or more zero dead-

l:mtrix _ is its negative), load coefficients, until six synthetic modes have been added
and independent elements of 7x'rs and .xT'a match per-

With this simple ph.vsical-interpretation of the matrix fectly. Alternatively, one may mechanically record the 2i
.-x_.-xcomes it new rationale for coordinate truncation. If independent equations available from Eqs, (267) alacl.
a valid represep, tation of interactions is to be preserved, (268), and solve simultaneo_sly for 21 unknown dead-
it is essential that the trttncated N by 6 matrix _ obtained load coefficients. This would require only 4 synthetic
l)v replacing _' by @ in Eq. (261) continue to-satisfy modes (24 dead-load coet_cients, with 3 arbitrarily
Eq. (267). i.e.. that even after truncation "_r.__ &r_x"In assigned).
practical applications, this may 1)e a difficult stipulation
to met't; there may simply not be available among the

The final equations of motion for vehicle simulation
t'ige;wectors (modal commns) in cya sma!] number of then lwcome
moth, shapes that meet simultaneously the constraint of

Eq. (267) and the earlivr rcquiremep.ts that low-frequency ]/i -- __r (_).-, _-),.q A (269)modes and potentially res_nant tootles be retained. A

pragmatic reaction to tills dilemma is the creation of a and
nu_ber of artificial t_r "'svntht'tie" mcv.',es designed to com-

l_h,m,.nl the desired h,w-frequt'ncy |nodes in such a way _" + 2g"_"_"+ (_.")"rj'=

as h, p,,rmit ,S_'_ to m,,t,t the constraint Eq. (267). -_{i + _'" ,k -- ¢_ M (_,,E - _'_:,,) fi"

To appl.v the .s.vntlletic-m_dt, c_mcept, one simply trun- (270)
catt, s tht, co_rdinatt, matrix '1' i._fiti_dl.vwit]_out regard for
Eq. 1.2fi7I. a_ld tllen t'ah-ulates the truncated value of -xr.x. where the barred matrices represent truncations that nmy
After cah'ulati_g the th.viation of this matrix fi'om the include synthetic modes. It may be computationally ad-
val,tt, ii]dicalt,d on the right side _f Eq. (267) (_md known vantageous to rise Eq. (269) to rewrite Eq. (270) in the
i_ advance of _notlal analysis!, tl_t, analyst may easily add form .......
sv_tl,.,tic Jn_th,s to the truncated com-dinate matrix as

n,,c,,ssarv to ,,blain sc,;istact,_ry corr,.lation with Eq. (267). _, + 2_n'_:_l'' + [(a"): + S]-' Sr (_.,'):] _/,' =

I'ach sv_fllwtic _.,_de is fully Slwcified by six stalar dead- _ rx_t:,,)_I.ad coel'ficie_ls ..X,,, ' '' . ..X,..and the |nodal frequency S_]-_.x_+ _'_'¢k- _k'_ M (x_,,t:- "" ""
,,, ;rod _v_dal tlan_piztg '" Values for the two latter scalars (271)
are cJ,)st'n s_dlit'iv_fllv higl_ to mi_imiz,, dr,gradation of

tl,, dt.ft_n_ati_m r_,.sp_s_., and the six dead-l:md coeffl- If the apl)endage response is of primary interest, Eq. (271)
t'it'llls A._. ' " " . A,,. f_.ir_11_individ||al s)ntht, tic mode c::n ,,',ill suffice, but for space vehicle simulation, both
!_, cl,_sen s_ as to _l_tain a perfect representati_?_._ of the Eqs. (26,9) and (271) are required.
l_ast' rt,acti_A t_ _u_t,of tlw six ;_ccelerations in It.

The most significant feature of these equations is the
t]t,,t'illl_.t' ;.t typital eh'm¢'nt in _"._ i,; giv¢,_ l_x' simplicity of the coefficient matrices of the second tle-

rivative terms. By nmltiplying Eq. (269) by the inverse
(a _a),, = a,_a,, • a,a.,-' .... 4 a,,a¥; _f the constant and usually diagonal matrix 1, one can

('2_) obtain Eqs. _:2f_9/and (271_ in the combined matrix form
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The absence of a coefficient matrix for the highest- appendage modal co,_rdinates than arc necessary with the
ordered derivative simplifies the numerical integration of alternative approach.
Eq. (272) very substantially when compared to corres-

ponding eqw_.tions of motion obtained by the methods of Sections III-B and llI-C contain derivations of equa-
Section III-C. The assumption C-_- E was introduced in tions of motion of flexible appendages and total vehicles,
the course of the derivation, and the final system of equa- respectively. These deri,'ations follow fi'om the most basic
tions is not directly applicable to vehicles that undergo principles of classical mechanic,s, but they are complex in
large changes of configuration. Had this feature (variable detail. Vehicles of variable gross configuration are cx-
C) of the present equations been retained, the vehicle cluded in tile course of tile derivations of Section Ill-C,

equations, such as Eq. (224), would have adopted a form so that the most general final results of that section are
that would be very inefficient for numerical integration, applicable to the unrestricted motion of a vehicle con-
The matrix I* in Eq. (224) is the total vehicle inertia sisting of a rigid body Bj to which there are attached a
matrix, which would becorr, e a function of time, and the rigid symmetric rotor, a linear oscillator, and a flexible
variable direction cosine matrix C would remain in the appendage limited to small deformations. Tile appro-
coefficient matrix 9f _. As a result, it would become priate equations are Eqs. (129), (131), (134), and (136),
necessary to invert or apply Gaussian elimination to a which may be considered in combination with E<1. (95)
time-varying coe_cient matrix of the highest-ordered for the appendage deformatiol_.s. Equation (84) provides
derivative at each step of the nmnerical integration (or the appendage equations of motion in a more general
at greater intervals as judgment allowed). It m_y there- t,nse in which the appendage is undergoing large rota- i
fore be concluded that the method of tiffs subsection (and tions relatix e to its base.
of Ref. 28) is apt to be preferable in application to ve-
hicles of configuration varying substantially with time.

The derivati_;n of equations of motion for flexible ve-
hicles in terms of disclt:te coordinates is pri,lcipally_a
bookkeeping task. Tilt, e<luations of Section III-B and

F. Summary III-C become useful only after the coordinate transforma-
The discussion of hybrid-coordinate methods includes tions of Section III-D are imposed. Four distinct coo|'di-

a very substantial body of material, much of which is not nate transformations are developed as shown in Eqs. (1,59),
available elsewhere. In this respect, Section III differs (187), (211), and (232). Tl_e first two are transformations
fro|n Sections II and IV, which are intended to provide to be applied to first-order equations, which m_lst be
abbreviated reviews of the well-established methods that used if modal coordinates (in the broadest sense) arc to
employ either discrete coordinates or vehicle normal-mode be used for an appendage that is e_ther on a rotating
coordinates exclusively, base or sut;ject to discrete damping. The various ways

in which first-order transformations can be used, with

To summarize, two quite diffclent methods are devel- discussion of limitations and advantages, may be fo,nd
oped: Section I!I-E covers-the synthetic-mode method, followinK Eq. (201). Second-order transforn|atio||s (as in
which employs equations of motion written separately Eqs. 211 and 232) are evahmted in the last part of Set'-
for the rig,.'d and elastic components of the vehicle; and tion III-D.
the preccding sections explore tile various ways in which
the equations of motion of the total vehicle may be co_- Under certain conditions of engineering interest, it may
bined with appendage equations in the simulation. Except l?c appropriate to apply the second-order eq_mtio,3 modal
in unusual circumstances, the synthetic-rood,, method transformations described here even to Iotatin_; append-
should be applied only to vehicles with time-wlrying con- ages, although in general such application is restricted
figuration, because this method generally requires more to uonrotating flexible bodies.
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_l_tivah.d by t1., prol_lt,nJ of dynanfie analysis of hell- coordinate transfornmtion afforded by ignoring Coriolis
cc_pl_,r lflade.s, Bisplingl,otf, Ashh T, and ltalfman provide forces should be recognized and this step should Iw cou-
ill tht.ir w_,ll-kl.,wl_ t_'xt (lh'f. 13) a derivation of the sidered carefull.v in any engineering analysis.
_.qlmtimls of motim, of a rotating beam (pp. 95-98) and
tln'corrt,spmlding I,nnlal analysis (pp. 1S4-187). Their
equations of motiott _Eqs. 3-121 and 3-127 of Ref. 13) IV. Vehicle Normal-Mode Coordinate Methods
apply to a contil_tons ]wain rather than to the discretized

stru¢'tsu'a! model adopted in tiffs report, but they differ A. Application to Nongyroscopic Linear SystemsWith
from the eqmdions at motion of a rotating appendage as Structural Damping
derived in this report (Eqs. 143 and 140) in a mot'e funda-
mental way also. The term G't) in Eqs. (143) and (140) In the introductory remarks of Section Ill-C, it is noted
does not ]mx'e a comderpart in tile equations of Ref. 13. tlntt the primary test of the utility of a given coordilmte
The matht.m:flic, a] significance of this difference is re- transformation is the degret' to which it permits the

tlected in the c'ompariso:l of the modal analyses of Ref. 13 truncation of the coordinate matrix, Thus the desirability
and this report. In Ref. 13 it remains possible to employ of a given coordinate transformation should be measured

in terms of the degree to which it tmcoup]es the systemin modal analysis tht' clas'_ of second-order point trans-
of differential equations employed in the vehicle sinm-formations, which in this report are restricted to nonrotat-

ing systems (typified by Eqs. 211 and 232), According to lotion. Yet in all of Section III, transformations are ap-
Section llI-l), one mvst employ first-order equation trans- plied to the apocndage deformation coordinates q only.

This represents a compromise with the objective of mi-formations (Eqs. 159 and 187) to inhomogeneous equa-
tions for rotating appendages, and may employ only coupling the equations, since in many applications co- -
contact transfor|||ations (Eq. 186) to st,cond-order homo- ordinate transformations can be applied as well to the
geneous equations of rotating appendages. These dff- variables representing the attitude., and position of the
ferences can be reconciled by physical interpretation of appendage base, so that even more complete uncoupling
the significance of the term ("r i in Eqs. (143) and (140). of equations results.

In this section, attention is directed to the determina-

For an undamped system, velocity-proportional terms tion of the range of applical)ility of point transformations
must arise in application to a spinning structtlre due to of second-order equations in obtaining uncoupled or nor-
Coriolis "forces" or Coriolis accelerations, the latter given mal modal coordinates fin" the entir., vehicle, Exan]ples
bv 2to × v, with to the angular velocity of the reference of transfurmations in this class arc the appendage trans-
frame with respect to which v is the relative velocity, formations of Eq,;. (211) and (232) ............
Because G't i comes from this vector cross-product, the
matrix G' must be skew-symmetric, If, however, the

structure is vcrv stiff in directions pointing radially from h_ the discussion of Eq, (217). it is noted that any
the spin axis, so that v has no component in this direction, equation of the class
then the Coriolis forces are limited for small deformations

to the radial direction. Since the structure is stiff in this M'ii _ D'¢} 4 K' q - L' (273)

direction, these forces may l)e of in'gligil)le influence on
the deformation. It is (ltv,te a separate matter to ignore' where M' and K' art, symmetric and
the i||flt|enee of these forces on the reaction at the base

of the structure, l_llt this too is often a reasonal_le D'-aM'+ ilK' (274) ......
assmnl_tion.

with. and/3 arbitrary st alars, permits the normal-mode
In application to ln,li,:opter blades, it may be appro- transformation of Eq. (211 I, namely.

p,'iate that Coriolis accelerations be ignored, as implied

,n lh,f. 13. Etkin and llughes (Ref. 38)have successfully q -'k'l (275)
applit,d the meth,,_ds of qlef. 13 to a class of spin-

stabilized satellites witll radially directed tubular metal where _ is a stpmre matrix who.':e columns are the eigen-
'antentms, as typifiett 1,v Ahmette I anti I'xplorer XX. vectors associated with Eq. (373). With this transformation
•Uthough rt, aso,,ml_h, caution must Iw exercised in appli- and a premultiplication by _r, Eq, (2'73) becomes
cation to ver> long, sh,nder structures (since tl.e Coriolis
forte applies a column load), the simplification of the ;[ + 2&r,_ + ,7'-',1= _r L' (276)
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i* t (,._:,_ R_,:,,+ _,:,,,)at ;; 0
"" -- -- x" x.'r __h M _t:,, F }JlM (':.,,_:- "-',..,,R 7_-,.:,,) '_ .'U(F. -,:,,-,.,, M/'}IO _- - (".79)

which has the structure of Eq. (273}, lacking the dat._?ging vehicle art, fixed, and (3) a "mean motion" frame with
term D'. ()m. c_mhl eqtmll.v well replaee F 1t/hy (_X aud respect to which the vehicle mass center is tixt.d and . -
add 1'2%(131) to the system of equations, exh'nding the '¢elficle relative motions have no angular m_m_t,l_tum
matrix of unknowns to include _-_X. Alternatively (mtd about the vehicle mass center. Milne Ira,rides a simple

equivalently), Eqs. (230), (231). and (278) could be cmr,- example tlmt illustrates the possil_h' diff,'fences in frames
binud its a single matrix eqnation. (2) and (3), and demonstrates that the zero-freq_,ency

rigid-lmd.v-rotati_m mode provides the rotation of the
i)t,termitmtiou of eigenvah:es and eigenw'ctors fer mean motion frame (3). (This fact is recognized also in

Eq. (279/ is conceptually straightforward, although corn- Ref. 3, altl,mgh less t'xplieitly.)
lmtational ol_stach,s may be inhoduced by the zero eigen-
values, which are a conseq_wnc'e of the positive senti- Equation (279) is not quite as gem'ral as Eq. (273),
th'{hfit_'_t'ss _f the e_wttieient matrix _,f [Olq] "r. Aside because of the al_sence of damping, in order tlmt the
trtm_ the qta,stio_, _ff'comptttational l)rot'edure, which is vehicle rigid-body modes ha,,e zt.ro dampiug as well as
treated it! all'¢ l|ioth'rllstructmal tlvmmiics text (e.g., zero |reqllent'y, al|.v damlfing im.]uth.d llltlst bt, p','olmr-
Ref. Ill. there is the questiou of interpreting the physical ti_mal t_ stiffness, i.e., D' ilK' is required. Within this
signilic;mce of these zert_-fretluency mod(.s. These modes restrietitm, whic]_ is traditionally aceeptal_h' in structural
c_rrt,slmnd to translation of the mass center and rotation dynamics, one may transfi)rm a version of Eq. (279) with
_f the _,ndefm'med velfich,. When response in these modes structural dampi_g into the form of Eq. (276). f.:_orclinate
is t'ombined with respol_se in the vari_ms deformation truncati_m may then be imposed as arg_,ed previously.
modes, it becomes som_.what dit[icult t_ determine just
what it is that rotates ira the amt_ulat given by the zero- The term lio_ig,yro.s'('ol_it"is applied to the linear systems
freq_,'nt..v rigid-lmd.v-rotatima m_de..Milne treats this of Eqs. (279) and (273t to reth'ct the absence of the tenn
question in Ref. 4, pointing _,ut that one might reason- G't i (skew-symmetric (;') induced hy mtatitm of the
ably he interested in at_y of tl,ree reference frames that vehich' or some vehicle component.
participate in the gross rotation of the vehich,: (1) an
attacht'd reference framt,, (2/a reference frame in which Point transformatitms to _,mmal-mode coordinatos for

the mass center and the principal axes of the deforming a s)'stem of second-order equations for an entire space
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vt'llich, are tl.ls limitt'd ill application to nong.vroseopie As noted in Section III-D in tile development following
lin_'ar svst_,llls x_ith structm'al damping, Physical appl!- Eq. (145), there is no obstacle to the application of a trans-
cationk is tlt_l_ linkdtcd to all inertially stabilized space formation as in Eq. (159), i.e.,
velfich' witl_ n.mrotating appendages and no internal
I'otnrs _)1"discrq'te damp(,rs. Q = ,I,Y (281)

to obtain uncoupled equations in the modal coordinates
It sholdd l)t, nt)tt_d tirol ext.l, t,,_v tiw original o})jective in )" (see E(|. ]60). The disadvantages of this approach

()f uncoupling tlw ('utire s.X'st('lllof t'_luatinns is _l()t real- (stemming principally from complex numbers in ,I,) are
ized. sint'c in general tht, dynamic ('_luations in ELl. (279) disrctlsst'd ('xtensivc]v in Section III-D.
must ]w augmenltt.d by an e(ltmtiqm that specifies any
eontn_l ttmlU_,s and fin'ct,s in T. ,\, and i". Tile control

When the total system of second-order equations isequations are almost invariably ntmlint,;tr, it only due to
a dead band in the response of thrustors to sensors, or the gyroscopic, l,ut no discn'tc damping is included, so
rt,sp_m,_e _f sells(lrs t() motion. The t,_luati_ns may also be that the homogeneous equatitms have the structure of
"'daml_,'d'" Ipc_sitivt'ly or negatively). Frequently the con- Eq. (143), it may be preferable to employ the real trans-
trol t'qlmtitms arc of higher order than Eq. (279). It is formation of Eq. (187)
tlwrefm'e unlikeh that the control equations will be
amt'lml_h' to itwlusion-in a s.vstem of equation'; of the Q = PZ (282) ....
structun, cJt F.q. (2731, s_ they must remai_a as attxiliar.v
equatinns tidal continue to couple the system of equa- t_, the state equation I280). An evahmtion of the advan-
Lions evt'll after tht' transfortnation to veldt'h, normal- tages of this tr;u_sfi:,'mation over that of Eq. (281) appears
m_de c_rdinah,s, in the text following Eq. (204) in Section III-I).

The method of Foss (Ref. 36 and Eq. 173) may l)e
It may also be noted that ..,yen for passi;'e systems the applied to the entire system of vehicle equations in appli-

t'xternal torques T and ,\ ,,my depend explicitl.v on the
cation to nongyroseopic but discretely damped systems,

variables in 0 and q. If. for examplt'_ gravity torque
expressions are substitutt,d fi_r T and ,\. these terms
sh,uld lw shiftt, d to the left side of Eq. (279) and their There remains the question of the existence of ncrmal-
l)rcst'l_t.'c rt'flt'c'ted ill the modal an,al.vsis iwith the result- mode coordinates for an entire system of vehicle coordi-
ing rt'placement of tl_e z,.'r_-frequeney modes by satellite hates when the base is not. inerti;dlv stal>ili:,ed. When the
libratim_ modes!. If this step is not taken, the terms 7" and base to which the appendage in attached has a substantial
.\ ilu_ried in L'/will intr_duce modal-coordinate coupling inertial angular velocity ,.,, the relatively simple Eq. (130)
i_ Eq. (276/.. ........... for the vehicle rotatim_ is replaced by its complicated

antecedent, Eq. (129). This equatima is nonlinear, so it
will not yield directly to any kind of modal..coordinate
transformation. In many prol)lems of space vehicle con-B. Application to Gyroscopic Linear.Systems With

Discrete Damping trol, however, one has advance knowledge of the desired
behavior "_ (t) of .... It is then pt_ssible to intn_duce the

i'_quati_u_s _1 nlotit_l _t a dual-spin vehicle with a variational coordinate., 0,, 0., _:, which define the small
tlt,-sput_ platf_rm _ith attacl.'d rotor, damper, and ttexi- dt,','iatio_ of the "cehich' from its nominal att!tude, and to

l_le al'q_cmlage art, c_dh,ch,d as l"qs. (207). (130), (131), replace ,,, in Eq. (129)Iw
(223 _', and a li_warized version _f (134). These art, all

linear equations, but they iue g.vr_sC_l)ic and involve dis- ,,, -- "_ -_ ¢i (283)
crete tlalnpil_g {s_ Eq. 274 is violatcd_. Thus it is not pos-
sibh, t_ apply a point transtornmtion t_ tlwse second- Assuming ¢_to be small iuld including this with q and
ordt,r t,qll,|tions to obtain unc_uq_h,d modal coordirtates, ili the linearization l_rot'ess, _l_t' t';.lll ¢:btain from Eq. (129)

a c_rrcsponding linear uquati_m. Wlwn _ (t) depe_ads on
tirol,, this cquation will still not .vit,hl to modal-coordinate

There l't,in,|ins tht, pt_ssibilit.v of rewriting the entire
transfimnation, but when "_ is constant, modal coordi-

svsten_ t_f equations as a single linear state equation s_H..h hates fi_r the entire ",ehich, can be found. With cart, rid

as Eq. t157_, i.e.. b_okk,'t.ping, tht' resulting linear, constant-coetBeit,nt
0 -- BQ " L (2_0) scc_u_d-tn'dcr dith,rential equatim_ obtained from Eq. (129_
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can be combined with tilt, correspondingly transformed nate transfonnations that prove useful in application to ........
and linearized Eqs. (13.t), (136) and (95) for damper, appendage deformation coordinates can be applied to tiler
rotor, and appendage, and written as a state equation as in entire system of vehicle coordinates ...............
Eq. /280). Application of the transformation of Eq. (281)

is then possible. All this would require much labor, and Section IV-A c_ntains a description of the dynamic
the end result would be of dubious value in comparison systems to which the traditional second-order equation
with the hybrid-coordinate methods of Section III. point transformations of stnlctural dynamics may be

applied. It has been noted that these simple modal-
C. Component Modal-Combination Methods coordinate transformations are inapplicable when the

vehicle contains an), spinning parts or discrete devices
The practical implementation of some of the trans- that dissipate (or create)mechanical energy. These same

formations discussed here and in Section III may for transformations will still be applicable to the _ppendage
complex vehicles require modal analyses that strain the coordinates, providing that the appendage base is not
capacity of present digital computers. To circumvent rotating.
the problem of finding eigenvalues and eigenvectors for

the matrix equations of very high dimension that may be In Section IV-B, modal-coordinate transformations are

required to accomplish the simulation of an entire space identified that are applicable to an), linear dynamic sys-
vehicle, Hurty (Refs. 9, 10) has developed a method tern. These are transformations to be applied to first-order
whereb)" separate modal analyses are performed on corn .... equations, and in some cases c_mplex nmnbers are intro-
poI3ents or subsystenas of the vehicle, and then a vehicle duced by the transformation.
modal analysis is accomplished by combining compo-

nent modes. Computer programs have been written for Although it is not the purl:ose of this report to ex-
this purpose (e.g., Ref. 39), and the component modal- plore methods of numerical computation, the compo-
combination approach has been widely adopted, nent niodal-conabination naethod is briefl.v described in

Section IV-C for comparison of its underl.ving coordinate-
It may appear from the discussion in this section that truncation philosoph.v with that of the h.vbrid-coordinate

the use of vehicle modal coordinates is qualitatively method.
different from the use of hyl;rid coordinates (Section III);

the former method involves coordinate truncation for V. Control System Simulation
fully uncoupled dynamic equations, while the latter im-

post,s truncation on appendage deformation coordinates A. Nonlinear System Analysis
in equations that are coupled by the discrete coordi-
nates of the vehicle. As a practical matter, however, the Space vehicle attitude-control s)'stems art, veD' rarely
use of vehiek, modal coordinates often depends upon linear in their relationship between control torque and
acceptance of the component modal-combination ap- attitude error. There is ahnost always a dead-band range
proaeh, and this method al._.o involves the trtmcation of within which the error can fall without i,.ctuating control
modal coordinates for components without regard for torque devices, and usually nonlinearities are present
coupling of the component equatioils with those of the even beyond the dead-band range. Often the torquing
remainder of the vehicle. Thus the hybrid-coordinate devices are gas jets or other mechanisms operating in a
approach and the component-mode nwthod of modal pulsed or "bang-bang" mode, or the)" may be momentum
analysis share the same pragmatic philosoph.v. In fact, storage devices tlmt require periodic "momentum dump-
it ma.v develop in many applications _hat tim h),brid- ing." The sensors nm.v be of the sampled data type, the)'
coordinate approach is a variant of the component-mode ma)' be inertial sensors that saturate beyond certain error
method in which t_,rtain components are assumed to be limits, or they nmy i;e optical sensors with a limited linear
rigid and the final modal anal.vsis of thc cntire vehicle is range. Thus there art, often significant nonlinearities in
not undertaken, tlie sensors and actuators of a space vehicle attitude-

control system, as well as the nonlinearities introduced

D. Summary b)' the logi,.' of the control law.

This brief discussion of vehicle modal-coordinate meth- The dynamic equations of the controlled vehicle are
ods is included for the prima D- puqmse of keeping the also frequently nonlinear, as the equations dcrived in the
h.vbrid-coordinate methods of the Scction ill in perspec- preceding sections attest, even when the structure tmth.r

tire. It l,as b_,t,n ohserved that the same kinds of coordi- control is assttm_ d to be linearl.v-dastic.
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Techniques of nonlinear analysis .have ]wen devised B. Linear System Analysis
that permit practical application to scalar second-order
differential equations, or to equations with certain kinds The process of control system design often involves a

of nonlinearities. These methods are described extensively preliminary phase in which it is assumed that the control
in Refs. 40 and 41, and they will not be reviewed here. system is to be linear, despite the designer's awareness

It is quite possible that, with severely restrictive assump- that he will eventually devise a nonlinear control system.
tions, eq,,atior, s for a nonlinearly co,,t,'olh'd flexible space By assuming linearity at the outset, the designer gains
vehicle could be obtained for which nonlinear analysis access to simple analytical nwthods that he can employ
may be fruitful, quickly and efficiently to develop a preliminary control

systena design. Nonlinearities are then introduced into

For examph., if for a given vehicle it is reasonable to the system, and a detailed simulation is performed to .

assume a single-axis response to a given control torque, confirm the acceptability of the design, or to provide the
say, 0, ¢= 0 and 0.. :-- 0:, = 0, then a single second-order basis for its modification. A discussion c.f linear system
equation for 0, may be extracted from the vehicle equa- analysis is included here for its utility in the preliminary
tions and subjected to phase-plane studies (Ref. 40, Ch. 7, design process.

and Ref. 41, Ch. 7). Alternatively, such simplified equa-
tions may for certain kinds of ,aonlinearities be amenable Although many of the dynamic equations of the pre-

to quasi-linearization and the application of describing ceding sections have been nonlinear, it is frequently
functions (Ref. 40,.Chap. 9. and Ref. 41, Chap. :3). possible to replace each variable by the sum of a small

variational coordinate and an explicit flmction of time

Certainly the primary method of nonlinear analysis of that establishes the nominal controlled time behavior of
a space vehicle with flexible appendages is direct simula- that variable. (This was suggested in Sections III and IV,
tion and integration of equations of motion. The modal where _, was replaced by "_ (t) _ t}, with the variational

cordinate ¢) presumed small.) In this wav a linearizedanalysis required for the explicit expression of the equa-
tions of motion of Sections III and IV is clearly suited to approximation ca:l be obtained for any dynamic simula-
digital computer implementation, and ip most cases this tion of a controlled vehicle.

would apl)t,ar to be tnw also of the integration process.
With severe truncation of app:'_ndage modal coordhmtes, The linearized variational equations of the dynamic
however, the equations may he effk'iently employed in an system can usually be combined with the linear equations
analog simulation, of a preliminary control s:,'stem design in a first-order

equation as in

As indicated by the references cited in Section II, (_)---BQ (284)
tl,ere is now abundant experience in the digital computer

numerical integration of discrete coordinate-equations Here it ha.s been assumed that it is possible to express
of motion, the control torqt,es as unkno_ns in a s.vstem of linear

differential equations in the independent.x'ariable time,
ilybrid-coordinate equations of motion have not yet with coordinate coupling to the dynamic equations. In

foun,1 widespread applieat!on. 1)ut digital computer many cases the preliminary control torque will instead
numerical integration programs have been applied to be available as an explicit fimction of the variational
lint'ar dynamic systems with nonlilaear control at Hughes coordinates, in which case it can simply be substituted
Aircraft Company (as described in Ref. 29), and similar into the dynamic equations. Thus the matrix Q in
programs are under development at the Jet propulsion Eq. (284) may or may not include control torques, but it
1,al)oratory. will certainly include all of tile kinematic coordinates

and their time derivatives.

Vehich, normal-mode coordinates have been eml)lO),cd

il, the simulatmn of controlled vehicles cl,iefly in ap- If the matrix B in Eq. (284) depends on time iz_ an
plication to mi:isiles and launch vehicles. (Al)prolzriate arbitrary way, nothing can be done with thcse equations
ela._tic-l-_dy equations may be found in Ref. 42.) Most but to integrate them numerically. In this event, tl,e
appliuatif_ns of modal coordinates to spacecraft have been lincarized equations are not substantially easier to deal
restrictt.d to tile determinati:m of passive linear response with than their nonlinear counterparts.
of the spacecraft structure to its dynamic environment

tltlrilll_ latmch. Both digital and analog computers have If matrix B has a l×'riodic time dependence, the stability'
been 4'mph_)cd successfully, of the null solution of Eq. !28;) (corresponding to 'he
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nominal motion) can be determined by application of used for dual-spin-satellite attitude-stability studies, based
Floquet theory. The equations would have this structure, essentially on Eqs. (238), (223), (224), and (222) (with the
for example, if for tile dual-spin system simulated by the last two equations written instead in terms of cantileve-r -
linear equations (224), (223), (222), and (216), the rotor appendage modal coordinates).
were nonrigid or asymmetric. The application of Floquet

theory to a similar problem nmy be fotmd in Ref. 43. Prelimina_, design of linear control systems is tro.di-
tionally based on the use of transfer functions, which

In the simplest case, the matrix B in Eq. (284) is con- establish the response of the Laplacc transforms of the
stant, and the stabilit3.' of the null solution of this equation system variables to correspondingly transformed input
may be determined from the eigenvalues of B. If the torques. The hybrid-coordinate method is particularly
dimens'on of the matrix B is very small, or if Eq. (284) compatible with this practice, although the method can
can be separated into a number of uncoupled matrix be applied also when vehicle normal-mode coordinates
equations of small dimension, it may be practical to apply are used.
Routh's stability criteria (see any basic controls text, or

Rt.f. 40, p. 9). Such an application is illustrated later in Although Laplace transforms can be usefully applied
this section. In most cases of interest, however, the high to any system of linear equations, the advantages of this
dimension of matrix B necessitates the numerical (digital approach are most obvious when interest is focused on a
computer) calculation of eigenvalues, small number of response variables. The concern of the

attitude-controls engineer is generally limited to the rota-
The presence of any eigenvalue of B with a positive tional coordinates 0_,0_,0:,, which have been used here to

real part indicates the instability of the null solution of describe the small deviations of the base or main body of
Eq. (284), arid, by a basic theorem of Liapunov (see. the spacecraft from its nominal attitude. Special problems
Ref. 34), also the instability of the null solution of the are introduced when sensors or control actuators are

corresponding nonlinear equation, located on flexible "appendages, since then the append-
age deformation coordinates enter the equation that

If all eigenvalues of B have negative real parts, the null establishes the control law. In any event, of course, the
solution of Eq. (284) is asymptotically stable, as is that of appendage vibrations must be permitted to influence
tile' corresponding nonlinear equation. 0 = [#_, 0.. 0:,] r, but often the appendage coordinates

themselves are not of interest. With the Laplace trans-

If none ot: the eigenvalues of B has a positive real part, form approach, it is a simple nmtter to remove the (trans-
and ;ane or more have a zero real part, no determination formed) appendage coordinates from the (transformed)
of the stahilit 3' of the null solution of the nonlinear equa- vehicle equations, and in this way to display most clearly
tion can be obtained from Eq. (284). the relatior_ship between transformed control torque T (s)

and transformed rotation 9 (._,').
in many applications of intercst, not e_'eiT kinematic

coordinate appearing in Q is relevant to the dynamic _ To illustrate this method without encumbrance,, it will

rt,sponse of tht, s)'siem. For examph', the coordinate X, be applied here to the relatively simple problem of thewhit'h tit,scribes the relative rotation of the symmetric
rotor of the ehml-spin spacecraft m Eqs. I224) _.nd (223), ineii ;fly stabilized nongyroscopic space vehicle with a
el_t,s llot appear (undifferentiated) in any of the dynamic single flexible appendage. The appropriate dynamic eqtm-
equatious of the system. Such a t_orelinate is termed tions maybe obtained by specia]izing Eqs. (216)and (224)
¢'yclit_ or i;:mmd_h,, and it must produce two zero eigen- to exclude rotor and damper, and to eliminate external
values for tlw matrix B. Theoretically. one must then resultant force F and external torques ,_on the append-
maniptdate the difft,rcntial equations so as to remove ages. The results are
the c.vclic-coordinate derivatives from Eq. (284), or re.

T I* 0"+ (_,,,: + --,:., _- -r,, ir) ._1_ (285)derive the equations with the use of special methods

that suppress these variables (see' Ref. 24, p. 54). In prac- _;r - _,_:,,R 0"ti_.', however, it may be sufficient simply to ignore those _ -e 2._ _ 4 _: _ = - M (_-,,_: -- _t:,.)
pairs of zero eigenvalues of B that can be identified with (286)
cyclic coordinates.

Define now the N b v 3 matrix
A digital computt,r eig,,nvalue program developed at

Hughes Aircraft Company (noted in Rcf. 29) has l)t,t,n _=__ __r M (X,.j:--X_:,,R- _''_:,,) (287)
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and note from Eq. (142) that Eqs. (285) and (286) may be T (s) = sz I* _ (s) - _r 82_ (s) (290)
written as

s-"_(s) + 2s_uq(s) + _'-'6(s)=s'-'_9_(s) (291)
r = I*0"- _'_ __ (288)

where tile argument (s) identifies the transformed vari-

+ 2_ + _-"_ = _ _" (289) able. Solving Eq. (291) for 7](s) and substituting into
Eq. (290), we may write

('File bar over 8 appears because the matrix of eigenvec. 7"(s) = [s'-'I* - s' _r (y2E + 28_ + _..,)-a_] O (s)
tors _ has been truncated, but the definition of Eq. (287)
is not so restricted.) (292)

The matrix (s'-'E + 2s_ + _'-') is diagonal, so its inverse is
Equations (288) and (289) provide the following rela- simply the diagonal matrix of reciprocal elements. Call

tionships among the l.aplace transforms: this matrix D, given by

1 0

1 !

s"_+ 2¢..a_ s + _. ]tim (s-"E + _'_ -t-._..)-' = (293) I

- 1 i
0 s.. + 2_7.¥_,._-s+ or}

When Eq. (292) is written in inverse form, tran:f'er functions 1./I_s'-', a = 1, 2, 3. Since I* is the inertia
matrix of the entire vehicle about the vehicle mass center,

e (s) = [s" l*-=-s' _r/3 8]-a T (s) (294) these are the anticipated limitin_.ase transfer functions.

Consider now the opposite limiting case, for which
the m_.trix coefficient of T (s) is called the matrix of trans- the flexible appendages are so flexible that they are essen-
fer functions. This matrix can be written in move con- tially detached, e._;erting no influence on the motion of
venient form in the special case in which truncation to a the rigid bo,ly (i.e., all natural frequencies o,_go to zero).
single modal coordinate has been imposed. In this case/3 Equations (_'94) and (295) then provide the limiting-case
is a scalar, _ is a 1 by 3 matrix (say, 8;), and Eq. (294) transfer functions from the expression
becomes

t 1

o (s)= 7(v' - V"_)-,r (,) (298)-[ ( ' )3-'1 I*-s'-'_'"8' 's"+2_,_,s+_ T(s)o(s) = s-'

(295) This limiting case affords a physical interpretation o_ 8 r 8
as the difference in inertia matrix I* of the total vehicle

The matrix gr g (or 8_'8 _ in this si3ecial case) is, from the about its mass center and the inertia matrix I' of the rigid
definition in Eq. (278), a 3 by 3 matrix w",th th,." units of an body to which the appendage is attached, referred to its
inertia matrix. A physical interpretation of _!'.'s matrix will own mass center. If 8 _ is the ith row of the matrix

defined in Eq. (287), and sufficient accuracy is preserved
be obtained indirectly in what follows, after t':uncation, the relationship

It may first be noted t'.,aat in ".i_elimiting case of a rigid .v

appendage, with _ approaching infinity, Eqs. (294) and _ 8_r B_ = I .... I' (297)i=1

(295) provide tile expected transfer functions for a rigid
vehicle. The trar,_sfer-fur_ction matrix is then (l*)-t/s '-'.If I* must apply. In the special case in which the vehicle mass-
is .-tiagonal, this is simply a col!ection of three single-axis center location is the same with or without flexible ap-
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(*) CONTROLSYSTEMBLOCKDIAGRAM hate, permitting the use of Eq. (295) rather than the
REFERENCE CONTROLDYN/_VlICS complex matrix expression found in Eq. (294). There

TORQUE TORQUEBLOCK then arises the question as to whether the matrix gr_

TR(t) _ ATTITUDE

,'T'_ T(0

'_._J. e(,) in Eq. (295) should be replaced by its ideal value as inEq. (-097) or calculated from the definition of Eq. (287),

H(,)0(,) truncating 4, to a column matrix correspond_,ng to the first
r._eo._q_L._.J mode shape. The use of the physical interpretation in

Eq. (297) is of course simpler, since it does not require
CONTROLBLOCK knowledge of the mode shape, but it is misleading in its

implication that all portions of the appendage participate(b) SCHEMATICOFDYNAMICS'BLOCKTRANSFERFUNCTION
equally in the first mode:: vibration. Tile alternative of ....

CONTROLToRQUE[ RIGID-VEHICLEBLOCK 1 using the definition of o fi:an Eq t.287) does not give

T(,) i _"_(_ TORQUEI ""I_ T j __ ATTITUDE wholly accurate results either, howeven for such severev .eb)

IT+ T'(0 _ _ truncation. In many situations, it is i'.o,-_ible to eombine[ experience and Eq. (297) to obtain as meaningful an

estimate of the proper vabre of g'r _ = 8t_ 8_ as theI /F(')o(') J approximate transfer function c"!Eq. (295)warrants. Thus

L _ ......FLEXIBILITYStock ___j actual eigenvector (mode shape) calculations can often be
DYNAMICSG($) avoided in very preliminary analysis.

(c) EXPLICITDYNAMICS-BLOCKTIL_NSFERFUNCTION The linearity of the system permits the use of super-

CONTROLI'-----..... position in generating from Eqs. (294) and (295) a moreTORTE-- TORQUE_IOJD-Vr.H_:LEBCOCK

-_ I ATTITUDE convenient transfer-function representation for use withT($) J _ k.")+ T'($) R($) - _, 0")"1 I e(,);; _--e(,) truncation to N modes, namely,

...... I * I-_IT_ 0is)= 1 I*--S 2 Sir 8_

?. 2h*'_'"_ _- ,:, (s_+ 2_,_,s + o_) r (s)
(29s)

The traditional block diagram interpretation of a con-

-_ trol system can very readily be imposed on flexible_,q *,,_ vehicles simulated with hybrid coordinates. Rather than
J _ simply substitute the transfer function of Eq. (294) or

Eq. (298) into a single dynamics block G (s), as shown in
Fig. 12a, one can introduce a rigid-vehicle block R (s)

_,. _ with feedback loops to accommodate the appendage flex-

L] ibility corrections, as in Fig. 12b.8N T sN
2 2

q' "2CN*'N""*'N The detailed structure of the rigid-vehicle-block trans-
-J fer function R (s) and the flexibility-block transfer functionFLEXIBILITYBLOCKF($)

--- D"--'_;NAMI----CS8--L-_:_G('----,) /_"(s) may be obtained by writing (with symbols from
Fig. 12b)

Fig..,.)2. Control system b_ockdiagrams

o(s)= R(s)r*(s) = R(s)[r(s) + F(s)O(.s)] (299)

pendages, the matrix _r g is the matrix Ia that appears in or

the lower right-hand comer of the 6 by 6 matrix ArA as

expanded in Eq. (207). 0(s)[1- R(s)F (s)]= R (s)T is) (300)

For preliminary control system design, it is not unrea- or
sonable to consider the influeLce of a flexibie appendage

to be adequately represented by a s_ngle modal coordi- T (s) = [R-' (s) - F (s)] O(s) (301)
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The transfer function R (s)may be chosen so as to provide value of 0 is sensed directly by sensors mounted on the
the rigid-vehicle term in Eq. (294), namely, rigid base.

1 • _ If a sensor is mounted on a flexible appendage, it senses
R (s) = 7., (I)- (302) the sum of 0 and any rotations due to structural deforma-

tion. Assume that the sensor is attached to the ith sub-

and the flexibility transfer function F (s) then follows from body of the appendage, as portrayed in Fig. 4. Then fli is
Eq. (298) as the 3 by 1 matrix of rotational deformations of the struc-

ture at the sensor location (see Eq. 72), so that fli is the

v (2i)th submatrix of dimension 3 by 1 in the deformation i
F (s) = s' _ 8it 8t (303) m_,trix q (see Eq. 83). Recall that q is related to _/by the

i=i (s2 + 2._io_ s + o_) transformation q = ,i_', from Eq. (211). Thus/3 i may be
obtained as the product with _"of that 3 by N portion of

An explicit representation of the breakdown of the obtained as the (2i)th set of 3 by N row partitions of _.
dynamics block G (s) to accommodate flexible append- Denote this 3 by N matrix as ,i_t,. so that/3 i may be writ-
ages is shown in Fig. 12c. ten as _

Calculations similar to the preceding produce a transfer Thus the sensor reads 0 + _._ _ instead of 0. The con- |
function for the total control system in the form trol system transfer function H (s) would for a flexibly Imounted sensor operate on 0 (s)+ ff2iif(s), rather than

T n (s) = [G -_ (s) + H (s)] 0 (s) (304) on 0 (s) alone. But Eq. (291) provides

as may be verified by comparison with Eq. (301), making if(s) = (s: E + 2s_'_ + _)-_s_8 0 (s)
the necessary change of sign. The inverse of the matrix
in brackets in Eq. (304) is the matrix transfer function of so that the control system transfer function H (s) actu-
the system, and G (s) is the inverse of the comparable ally operates on [E + ckzi(s'-'E + 2s _'ff + "_z):2-s_""8] 0 (s).
matrix in Eq. (.301). Equation (304) implies that the Equation (304)is thus modified to the form

r_(s) = [c-_(s)+ _;(s)(E + ¢_.,(s2E+ Z_&+ _)-'e_}] 0(s) (305)

when the attitude sensor is attached to a flexible append- The dynamics transfer function G (s) is then, from
age on the ith sub-body. Eq. (301), the scalar

As noted previously, the transfer-function concept is G (s)= I_s _"- (_ + g/2,a_ s + G,'_)'most useful in preliminary analysis, when simplifying
assumptions are most tolerable. As an extreme example, _

transfer functions are recorded for a vehicle with a single- [ s_(8_)' ] -_
mode representation of its flexible appendage (e.g., the 1 I**
first mode), with the further assumption that dynamic - (i_s_) 1-s_ + 2¢_ ¢,_s + cry'
response in this mode influences vehicle response about

[E ]one axis only. The inertia matrix I* is taken to be diagonal. _ 1 - (8--J-"_)-2"]+ _ _,_s + _
Thus for the single axis denoted by a, the rigid-vehicle = _ I, j
transfer function is the scalar (from Eq. 30) (l*,,s"-) s_ + 21__,_s + _'_

(_rr)

or

and the :_exibility transfer function F (s) is the scalar

(fromEq. 303, G_(,)=[( l*s_)i _+2"_'s+a_s_ 1----_ _](' "_q+2,,a,s+cr_]

F(s) = (s'-'+ 2¢,_,s + _) (308)
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The quantity Necessary and sufficient criteria for asymptotic stability
folh)w.: .........

1 I_., (1) I2>.,_> o

which is 1 for a vanishingly small appendage and zero (2) 211_',_', a,-> 0
for an appendage on a vanishingly small base, is given
the label (3) Ii'I,r, -_-K (1 - -"_')> I-I

,c_=__1 - (8,.)' (41 2K:1_, [I__ + K (1 - -_) - I; _,_]--
I_ (309) " •2K-°_, _i (1 - :_')> 0

anti may be called the normalized reduced.inertia for (5) Ko,_> 0
axis _ and mode 1. On the assumption that the sensors

are attached directly to the bast,, the total control s_stem Assuming that gain K is positive, one may infer asymptotic
transfer functitm is available from Eq. (304) as the scalar stability in every cas--, since 0 < -_?< 1 and all other sym-

bols appearing in these criteria are positive.
o.(s) c(_)
r_ (s) = 1 + C (s)H (s) (310)

Of course it should not be assumed that the appendage
From this expression, the customary procedures of con- can never destroy control system stability; this supposi-
trol system synthesis can be applied. For example, sta- tion is demonstrated here only in a very special case.
bility can be determined (in the linear approximation)
from the roots of the characteri,_tic equation in s, ........

It may be useful for the control system designer to con-

1-_. G(s)H(s)= 0 (311) struct root locus plots corresponding to simple models
such as that reflected in Eq. (312!, which is based on

This is illustrated here for a simple gain control, so that single-axis response of an appendage represented by a

H (s) is the constant K, and Eq. (311) becomes (noting single modal coordinate. The root locus plot is simply the
Eqs. 308 and 309) plot of the locus of the roots of Eq. _312) as K ,,'aries from

zero to infinity. When K--0. these roots (called the
poles) are

1 + K (s_ + 2d5,or,s + o,_) = 0
I'.s"-[_,s=+ 9.¢,_,s + _]

Sl _ Pl -----0

or, if -_s: + 2_1,rvs' + ,_ ,_ 0, this becomes s': _-_-:i). - 0

, o <, ..

, .0'(.L',/_)-,s.:,(2l;;.c,,,,) -_ s-'(i_,,,_+ K) s._.,_p:,,_ --: I,:, ,,, ±[(/;;,':_,)- - I;,._?l,,,,_]"_
• s (2K_.,_i)+ Ka'f = 0 (312) 1_,-'?

Stability is readily assessed for this systern by the use of = (-a_.-") [ - ;'' -- i (__:'- _'_,'_']
the Routhian array: (313)

s): l,,_J., I_ + K K_,I and when K = :,:, these roots (calh.d the zeros_ are

s': 21",,t:1_ra 2K_.',o_ 0
s,..., = z,.: -- _,, [- _, ±i(1 - t'_)'=] (314)

2
;": laat + K- "_K K_rl 0

For most problems of practk,J intvr(,st, the percentage
21_. o_K of critical damping is only a few percent, so .,,'- _:f is

s_: 2K_.__r_- (l_,a_ + K -_-/_K) 0 0 positive. Evcn when this condition is violated, however,
the poles in Eq. (313) remain in the left half-plane, as the

a°: K_,_ 0 0 Routh analysis guarantied.
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Figure 13 is not a root locus for K ranging between zero _._ i
and infinity, but is instead a plot of tile loci of the poles !
and zeros as ./_ and .L', vary. This figure is in the plane of
solutions for s :=:,-t ifl. It shows the locus of the two
complex conjugate zeros as ._, varies from zero (when
z,,... = ±fir,) to 1 (when z,...-: 1,-1). and fnally to
infinity (when z_.. --- 0, _- _). These loci are represented
as long-dash lines in Fig. 13. The short-dash lines show
the pole loci with L', variation. Tilt, two poles at ze:'6 are
unchanged, but the poles p:,, p, change from purely imag- 2.0 .........
inary roots ,vhen _ .... 0 to double real (and negative)
roots when L', == /L The poles then split, and approach !

!
zero and negative infinity as .G increases. The zeros are
uninfluenced by variations in .g, as are the two poles at ]
zero. The two remaining poles coincide with and cancel j
the zeros when :l? = 1, since there is then no flexible j
appendage on the vehicle. As ,/_'goes from 1 toward zeio,
the poh's move alor_g tim solid-line loci in Fig. 13. When _ /
these loci reach the real axis (as shown for .G = 0.50 and _ 1.5
.¢, = 0.707), the poles split and approach zero and nega- _<: -

Z ...
tive infinity. _ .

/
The more customary root locus p!ot shows the path of _ /

the roots from the poles (where K 0) to a _qnM position 'q ._--- . _"; :.

either at infiuiW or coincident with the zeros (,,,here __ i
K .... or-). Such a plot requires repeated solution of the o I
fourth-degree equation in Eq. (312)_ and is a suitable task
for a computer. A few such plots lmve been generated for _- o..

simple control system transfer fimctions H(s), and no _" "'_,..
instabilities were found, although no s)'stematic study has ",....
been undertaken. Figure 14 illustrates a typical result for
the simple gain-control s.vstem previously discussed, with

1I (:,') :- K. For such a system, it is a simple matter to es-
tablish the existence of vertical asymptotes, and to deter-
mine their intersection with the foal axis. \Vith a little. --

additional labor, one can find general cxpress_ms for the 0.5

lines of aplm_ach to the zeros and departure from the
l_oh's. Such calculations indicatt, that Fig. 14 is typical for
practical values of -q and G. it is iuteresting to note that
even as N approac]ws tmitv anti the al_lWndage.l)oles and _-_ 0.75

zeros approach (.'onh,st'ellc(,. ill_' h)ci that converge upon r.. 0.20
the zeros continue to lw th()s,., rigid-body po]e_ at tilt,
origin, as shown in Fig. 14, for values of /? as high as 0.97. 2

The exploration of the influence of flexible appendages 0
on control system transfi'r functions appear_ to })e per- -1.0 -0.5 0
haps the easit, st and most immediately rewarding path to ,/,q, IHi:NORMAI.!ZI:DRI_AIPARTOF,

understanding of system bchavi,)r, but this cxplo:':dion I_ig.14. Root locus plot lvariable gain K)
has only begun.
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Nomenclature

A flexibleappendage (genericsymbol)

A' skew-symmetric matrix coefflcitult of q (see Eq. 140)

A i ith flexil)le appendage

A; ith rigid sul)-body of appendage A

a inertial acceleration of space vehicle nmss cep.Wr

a _ i_wrtial acceleration of the' ith body mass center

a,, a:, a:, d,'.'xtral orthogonal unit ve.':tors fixed in A

{a} vector array {a, a-,a::} T

B rigid body, space vehicle base

B coeffici_.nt matrix (see Eq. 145)

B_ ith rigid body

b scalar constant locating damper mass (see Eq. 108) II

Ih,, b.., b:: dextral orthogolml unit vectors fixed in B

{b} vector array {b, b:b:;} "r

C direction cosine matrix relating {a} to {b} (see Eq. 34)

CM vehicle mass center

c w'ctor from CM to po:-t O fixed.in B (see Eq. 36)

c matri:; representation of e ,,_basis {b}

D' symmetric velocity-coefficientmatrix (damping matrix)

d dasllpot constant (see Eq. 132)

t identity d vadi,, (set' Eqs. 103, 125)

E identity matrix (see Eq. 56)

E _,E'-',I":_ columns of 3 by 3 identity matrix

e,e position vector and corresponding matrix describing motion of CM
in B due to moving parts (see Eth..58)

F ,'xtt'Hml force applie.'! t,.=,-vehi(.h,

F _ _',:tt'r:_,'!f_r-"' al_.pli,'dto body A.,

F '_ matrix representing F" in basis {a} (see Eq. 55)

f' force applied to B, by A (see Eqs. preceding 239)

f. f_wce applied to B,. excl,ding f' (sc_' Eqs. preceding 239)

f', [ matrices corr_'sponding tt, f' anti f. in basis {b}

f_ matrix ot forces on l)ody A,, and top half of matrix A

(;' skcw-svmmetric vt'locity coefficient matrix (set. Eq. 8.1)___

G skexv-svm,letric matrix (s_,e Ett. l tl)

tl vt,hich' angtdar m_mt,ntum with respect to mass center

ti' _m_ular I_l_ml:.ntum of body A, witll respt'ct to its mass center

tI' Inatrix rt,pr_,st.ntatioll of I1' in vector basis fixed in A,
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Nomenclature (contd)

h. It an_ular momt,ntlm_ vector and {1)] basis matrix for rotor B relative
to base B,

I int,rtia <lvadk' for total v,.hicle with respect to point () tse,' E'I. 102)

I:: vithit, of I for u|ldefo|'l|.,d xehich. (see Eq. 11_)

I' inerlia dyadic' of vchic'h' exch|ding al)pe||dagt,, with respect to P'. the
Hiass cl,nter of this portion of the vehic.h, (set' Eq. 240)

I' inertia dyadic for .l; with respect to its mass center P; (see Eq. 139)

I, I::, I' inertia matrices in basis {b} for dyadics l, I*.and I'

I _ inertia matrix for I' in basis fixed in As

I -L inertia matrix ot tlit' ||||th'for|ned appendage with ;'espec't to P' in
basis 11>I

{i} vt'c.t_r arv,_, of I_it _ t.ctors i,, i_.,i: fixed in inertial space

] (_bv(J _,Xl,,;mdcd inertia matrix (see Eq. 258)

J in,._'tia dyadi_.ot tht, rotor (see Eq. 107)

7 moment of inertia of rotor about symmetry axis

K' coefficient matrix for q (see Eqs. 84, .t)l)

k dampt'r spring constant (set, Eq. 1:3:2)

L' coltmm matrix forcing function (see Eqs. 84, 94)

1_ matrix of t,)rqucs about wllass center of body A.;, and bottom half of
1_i,fl1"i\A

!'. I' v,.ctor al,d {b} basis Imttvix for tor<luv ;q_plit'd t,, B, l_yA (see Eqs. 240
at.1 212_

!. I x,'ct_r and Ib} l_;tsis matrix f_>rtorqu,' apl'_ii_.d to I_,, _'xchldiug i' (see
!'_1_;.24(1;uld 242)

31 _e|.'ralizt'd Gt_ l_x"_311in,'rlia tn;tlliX ,1t ca||tih.vt'red appc, nda_e (see
i'_cI. S(_)

._1' _q'nel';dizcd int,rlia m;llri\ (.s_.,,E,I,,. SI and 87)

'l// Sl).lt',' v,'liich' t._tal ,_ass

lit dltnllUT llil,lh _,

m, _n_p,s_l itl| l..lx

ill _ ;,I;I,,',ot ;q_p,.I,l,,t_. :,,..,' I']_i, 2.7,

.\" _.itl.,rlitttl_l.,l,,t,,.,_lili;tl,,,,,ittt,rlr,lliCltti_tii(asilll']_ 1. Ifffi:.o1Ini_lil,.r
_t t,_tal t.t._di_.tt_-,, i_ a _,,_p,I|-,|i|.,d s_.t_as i1_Eq, :2.2!

N' n_n.lil..arh,r_,_,,i_,l_ I t1,!

tt citht.r t_tal ,._,.1,, _ ,,t ._:,tl l,,,li_,s in a discr|,tt, parameter modt'l of
al_ app_,nda_,_, l,_,, _ I_I¢ I. _. tom l_ttmht, r of _i_itl hodies in a
discrch, p;ll';lillt,l,,l _11,.(,I,,( it _,,,l|ich,

O a_it,t {i\_ i1_1t. t,filit i_1,v_tv_iIil (;M wlJvn vt.]fich, ,,vld,.f,,vmcd
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Nomenclature (contd}

O' point fixed ill inertial space (see Eq 35)

P 12)) by 12n transfi)rr)mtion matrix (sec Eq. 179)

P' mass center of vt'lficle exclusrce of append.ages

1) (,ither generic positic,n vector from O (see Eq. 98), or vector from. P' ....
to Q (as in Eq. 246 _,

i):: value, of p wlw'., veldcle undel:ormed

1)_ matrix in '_,,,sls"{a} of vector from P' to appendage mass_center

P, mass cc.nter of ])ody A,

Q ¢'it]ler point fixed in H on illtt'rfac.t. ()| .._and B (as in Eq. 36), or 12n l)v 1
state variable (as in E(ts. 144.1-15!

Q. mass center of A. when al_pendage imdet()_ned

q 6),.b-," 1 matrix o; deformation coordinates (see Eq. 83)

R- vector from O to Q

R 3 by i mat_x representing R in l)asis {b}

r.,, r., vector from Q to Q., and corresponding matrix in basis {_a.}.

s Laplace transform variable

T 3 by 1 matrix of applied torque (sec Eq. 128)

T _ torque applied to ith body about its mass center

t time

[' 6 I)v 1 matrix of rigid-l)ody co¢)rdimdes (set' E(I. 257)

u', u" vector from Q., to P., and corresponding matrix in basis {a}. defining
translaticmal deformation of ;tpl)endagt' (set' Fig. 4)

X, X vehich, mass center inertial position vector and corresponding inertial
basis matrix

x,x inertial position vector-of point O mad corr(,sl_ inertia] basis
matrix

"Y --transformed state variable (see E( I. 159)

Z transformed state variab]t, (see Eq 187)

Zj_ 12n l)y 1matrix of homogeneous solutions (see Eq. 17_7)

z 6tl by i matrix of variables (see Eq. ISfS)

z, elements of ,:

¢)^- real part of ,\^ (sce Eq. 164)

13' rotation ,,vct()r for small rotations of b_,J)" A, relative to 4

fl" matrix rvl)rv,,_,r, tation of 13'_in vector basis fixed in ..It

fl_'fl_'fli' t'h'ments of/1"

I"^ izmi/ciuary part ()J ,I,^. a 12n })v 1.matrix tst,e Eq. 164)

-,'", upper half of I....(s('_. Eq. 17.t_

7 6n bv 6n matrix (set' Eq. lb6)

A 6n by 6 matrix (st,t, Eq. 261 t
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Nomenclature [contd)

_r..x matrix product with interpretation as an inertia matrix (see Eq. o67)

8 6nbv3matrix

g N by 3 matrix formed l)y truncating 8 (see Eq. 287)

81 1 by 3 matrix formed by truncating 8 to _', with N -- 1

.L, percentage of critical dmnping in vibration mode m

,;" diagonal matrix with diagonal elements ¢_, • • • , .,;....

_l 6n by 1 matrix of modal coordinates (see Eq. 211)

_f 6n by 1 matrix of modal coordinates for cantilever modes (see Eq. 232) -

(-_ direction cosine matrix establishing inertial 6rientation of body B (see
Eq. 53)

tj 3 by 1 matrix with elements ¢),. ¢i:. ¢_. providing a linear approximation
of 0, (see Eq. 1301

.,, 6 by 1 matrix of external forces and torques (see Eq. "958)

,_ 6n by 1 nmtrix of external forces and torques (see Eq. 94)

,\,,, eigenvalue (see Eq. 16"9)

t_" mass ratio m'')ll

v number of constraint equations

_ translation of damper mass (scalar)

p generic position vector from vehicle mass center (see Eq. 97)

p" generic position vector from mass center P, of sul_lmtLy-A,., (see Eq. 1(19)

x_:,,,__,,,,: (see list of operators)

o._- imaginary part of eigt, nvaluc A,., and ht'l,ce, a natural freqttt'ncy (see
Eq. 164)

diagonal matrix with diagonal elements rr,, ' • ' , _....

r rotor torque magnitude (see Eq. 136)

,i,'" 12n by 1 eigenvector matrix (set, Eqs. i47 and 148)

,1, 12n by 12n transformation ,uatrix with cohmms ,1,', " " • ,,1,':" (see
Eq. 153)

rotor angular speed-(-sce Eq. l&5)

4/ 6n by 6n transformation matrix for cantilever modcs (see Eq. 23:2!

sb'" 6n by 1 matrix describing mode shape (see Eq. 148)

4/[' scalar ,th clement of matrix 4/"

4_ 6n by 6;J trans[ormation matrix with columns ¢,'' ,4, .... (see
Eq. 210)

,I,_' 12n 1)v I matrix, the imaginary part of 4 ^ (sce Eq. 16J)

4'_ 6n by 1 matrix, thc imaginary part of 4,̂ . and upper half of _,_ (see
Eq. 174)

ll"-- angular velocity of {a} relativt, to {b} (see Eq..l,"i/

fl" matrix representation nf II '_in {a} basis
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Nomenclat_,:e_(contd)__

fZ angular velocity of rotor B:, relative to body B_ (see Eq. 107)

(a inertial angular velocity of B

¢ai inertial angular velocity of body A_

o,{,,_,,o_ scalar measure numbers of _i in basis fixed in Ai

Operators

[ ] square brackets enclose matVces only when the elements of the matrix
are recorded explicitly (see Eq. 44)

{ } braces always enclose vector arrays, which in this report are always
cohmm arrays of three orthogonal unit vectors (see Eq. 33)

(_) tilde either over a symbol or as a superscript, denotes a :_kew-
symmetric matrix formed from a cohmm matrix, according to the
pattern established by either Eq. (44) or Eq, (89), dep._ending on the
,r_atrix dimension

(') dot over a vector or dyadic denotes time differentiation in an inertial
frame of reference. Dot over a scalar or matrix denotes time differ-
enti .ltion

(o) cirule over a vector or dyadic denotes time differentiation in the
reference frame of body B_ .(see Eq. 98)

td

d-t"( ) denotes time differentiation-in reference frame f. (The symbol t may
be replaced by a, b, or i, which denote reference frames fixed respec-
tively in body A, body B, or inertial space,)

( ) bar over a matrix indicates truncation, changing dimension 6n to N.
(Note tlmt'_ in Eq. 283 is excluded)

summation operator

Y_.,,,_,,r summation matrices consisting of ones and :,.eros (see Eq. 85)

Supcrscril)lS

7" dr,notes matrix transpose

--I dt'tmtes matrix iIwerse

* as ._Ulx'r._c¢ipt for a comph, x number, denotes the comph'x conjugate
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